Distributed Training Across the World

Ligeng Zhu, Yao Lu, Hongzhou Lin, Yujun Lin, Song Han

Neurips 19 MLSys
Why Distributed Training?

• Model sizes
 • AlexNet (7 layers) -> VGG (16 layers) -> ResNet (152 layers)

• Dataset sizes
 • CIFAR (50k) -> ImageNet (1.2M) -> Google JFG (300M)

Even with modern GPU, says eight-V100 server, it still takes days and even weeks to train a model.
What is Distributed Training?

<table>
<thead>
<tr>
<th>Conventional SGD</th>
<th>Distributed SGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sample ((X, y)) from dataset</td>
<td>1. Sample ((X, y)) from dataset</td>
</tr>
<tr>
<td>2. Forward to compute loss.</td>
<td>2. Forward to compute loss.</td>
</tr>
<tr>
<td>4. Apply gradients to update model.</td>
<td>4. Synchronize gradients</td>
</tr>
<tr>
<td></td>
<td>5. Apply gradients to update model.</td>
</tr>
</tbody>
</table>
Why Learning across Geographical Locations?

It's not who has the best algorithm that wins. It’s who has the most data.

—Andrew Ng

However, it is always difficult to collect data (even illegal sometimes).
Why Learning across Geographical Locations?

Collaborative / Federated Learning
Data never leaves local device.
Communication Limits Scalability

Latency

- Infinity band: < 0.002 ms
- Mobile network: ~50ms (4G) / ~10ms (5G)

Bandwidth

- Infinity band: up to 100 Gb/s
- Mobile network: 100 Mb/s (4G), 1Gb/s (5G)

Shanghai - Boston:

- 10 Mb/s with a high variance.
- 78ms (ideal) / >700ms (real world)

\[
11,725 \text{km} \times \frac{2}{(3 \times 10^8 \text{m/s})} = 78.16 \text{ms}
\]

What we need

- Bandwidth as high 900 Mb/s.
- Latency as low as 1ms.

Bandwidth is easy to increase.
Latency is hard to improve :(

What we need

- Bandwidth as high 900 Mb/s.
- Latency as low as 1ms.

Bandwidth is easy to increase.
Latency is hard to improve :(
Latency is critical
Distributed Training Across the World

Ligeng Zhu, Yao Lu, Hongzhou Lin, Yujun Lin, Song Han

Neurips 19 MLSys
Delayed Update: sync stale gradients

Conventional Distributed SGD at step i

1. Sample (X, y) from dataset
2. Forward to compute loss.
3. Backward to compute gradients.
4. Synchronize step i’s gradients
5. Apply gradients to update model.

Delayed Update at step i

1. Sample (X, y) from dataset
2. Forward to compute loss.
3. Backward to compute gradients.
4. Synchronize step $(i - t)$’s gradients
5. Apply gradients to update model.
Delayed Update: put off the sync barrier

Normal Distributed

Gradients from time stamp \(i \) are synced before \((i+1)\)th update.

Delayed Distributed

Gradients from time stamp \((i-t)\) are synced before \((i+1)^{th}\) update.
Preserve Accuracy by Compensation

Sync \textit{gradients (i-t)} are synced at \textit{step i} update.

For example, if \(t = 2 \)

\begin{align*}
\text{Vanilla SGD} \\
&w_n = w_0 - \gamma \sum_{i=0}^{n-1} \bar{v}_i \\
\bar{w}_3 = w_0 - \gamma(\bar{v}_0 + \bar{v}_1 + \bar{v}_2)
\end{align*}

\begin{align*}
\text{Delayed Update} \\
&w_3 = w_0 - \gamma(v_0 + v_1 + v_2) - \gamma(\bar{v}_0 - v_0) \\
&= w_0 - \gamma(\bar{v}_0 + v_1 + v_2)
\end{align*}
Preserve Accuracy by Compensation

\[w_{n,j} = w_0 + \sum_{i=0}^{n-1-t} \Delta w_i + \sum_{i=n-t}^{n-1} \Delta w_{i,j} \]

Same as normal distributed training

Difference caused by local update

Global information

Local gradients

Theoretical Convergence:

\[O\left(\frac{1}{\sqrt{NJ}} \right) + O\left(\frac{t^2J}{N} \right) \]

Convergence of SGD:

\[O\left(\frac{1}{\sqrt{NJ}} \right) \]
Delayed Update: put off the sync barrier

Naive Distributed SGD

![Diagram of Naive Distributed SGD](image)

Delayed Update

![Diagram of Delayed Update](image)

Wait time:

- Naive: $T_{\text{communicate}} - T_{\text{overlap}}$
- Delayed: $\max(0, T_{\text{communicate}} - T_{\text{overlap}} - t \times T_{\text{compute}})$

Delayed update speeds up training and also tolerate **high latency**!
Delayed Update: put off the sync barrier

Accuracy: promised

Latency issue: solved.

20 delay -> tolerate 6s latency.

Remaining issues:

Bandwidth / Congestions
Temporally Sparse Update: periodically sync

Conventional Distributed SGD at step i

1. Sample (X, y) from dataset
2. Forward to compute loss.
3. Backward to compute gradients.
4. Synchronize step i’s gradients
5. Apply gradients to update model.

Temporally Update at step i

1. Sample (X, y) from dataset
2. Forward to compute loss.
3. Backward to compute gradients.
4. Synchronize step $[i - d, i)$’s gradients if $i \mod d == 0$.
5. Apply gradients to update model.
Temporally Sparse Update: reduce sync frequency

Normal Distributed

Node 1

Node 2

Gradients from time stamp i are synced before $(i+1)^{th}$ update.

Temporal Sparse

Node 1

Node 2

Gradients from time stamp $(i-p, i]$ are synced before $(i+1)^{th}$ update.
Temporally Sparse Update: reduce sync frequency

Gradients from time stamp (i-p, i] are synced before (i+1)^th update.
Similarly, we compute the compensation.

\[(v_{n-p+1,j}, v_{n-p+2,j}, \ldots, v_{n,j}) \leftarrow (\overline{v_{n-p+1}}, \overline{v_{n-p+2}}, \ldots, \overline{v_n})\]

Vanilla SGD

\[w'_n = w_n + \left(\sum_{i=n-p+1}^{n-1} \frac{1}{v_i} - \sum_{i=n-p}^{n-1} v_i \right)\]

Momentum SGD

\[u'_n = u_n + \left(\sum_{i=n-p+1}^{n} m^{n-i} \frac{1}{v_i} - \sum_{i=n-p+1}^{n} m^{n-i} v_i \right)\]

\[w'_n = w_n + \left(\sum_{i=n-p}^{n} \sum_{j=n-p}^{i} m^{i-j} \frac{1}{v_j} - \sum_{i=n-p}^{n} \sum_{j=n-p}^{i} m^{i-j} v_j \right)\]
Temporally Sparse Update: reduce sync frequency

Naive Distributed SGD

Wait time: \(T_{\text{communicate}} - T_{\text{overlap}} \)

Bandwidth: \(\frac{||W||}{T_{\text{training}}} \)

Temporally Sparse Update

Wait time: \(\frac{T_{\text{communicate}} - T_{\text{overlap}}}{P} \)

Bandwidth: \(\frac{||W||}{P \times T_{\text{training}}} \)

Temporal Sparsity alleviates congestion and improves amortized latency / bandwidth.
Temporally Sparse Update: reduce sync frequency

Congestion: solved

Bandwidth: \((900 / P)\text{Mb/s}\)

However, even for temporal_sparse=20, 45\text{Mb/s} is not always achievable, e.g., cross continent connection.
Results
Results

- p3.8x Instances on AWS (4 x V100)
- 4 instances at 4 different places
 - Ohio, California, Tokyo, London
 - Bandwidth: ~15Mb/s Latency: ~300ms
- The scalability of naive training: 0.02
- The scalability of DTC training: **0.72 (36x better!)**
Deep Leakage from Gradients

Ligeng Zhu, Zhijian Liu, Song Han

Neurips 19
Is gradient safe to share?

Private

Pred: cat

Differentiable Model

Loss

Pred: dog

Public

Gradients

tensor([[[-5.3668e+01, -1.0342e+01, -3.1377e+00],
 [-7.5185e-01, 1.6444e+01, -2.1058e+01],
 [-8.7487e+00, -5.0473e+00, -5.5008e+00]],
 [[-5.3668e+01, -1.0342e+01, -3.1377e+00],
 [-7.5185e-01, 1.6444e+01, -2.1058e+01],
 [-8.7487e+00, -5.0473e+00, -5.5008e+00]],]}

?
Gradient is not safe to share!

Differentiable Model

Pred: cat

Pred: dog

Loss

Private

Public

Gradients

tensor([[[-5.3668e+01, -1.0342e+01, -3.1377e+00],
 [-7.5185e-01, 1.6444e+01, -2.1058e+01],
 [-8.7487e+00, -5.0473e+00, -5.5008e+00]],
 [[-5.3668e+01, -1.0342e+01, -3.1377e+00],
 [-7.5185e-01, 1.6444e+01, -2.1058e+01],
 [-8.7487e+00, -5.0473e+00, -5.5008e+00]])
Conventional Shallow Leakage

Gradients

tensor([[[-5.3668e+01, -1.0342e+01, -3.1377e+00],
 [-7.5185e-01, 1.6444e+01, -2.1058e+01],
 [-8.7487e+00, -5.0473e+00, -5.5008e+00]],
 [[-7.5185e-01, 1.6444e+01, -2.1058e+01],
 [-8.7487e+00, -5.0473e+00, -5.5008e+00]],
 [[-8.7487e+00, -5.0473e+00, -5.5008e+00]],
 [[-8.7487e+00, -5.0473e+00, -5.5008e+00]]])

Membership Inference
Whether a record is used in the batch.

Property Inference
Whether a sample with certain property is in the batch.

But, can we obtain the original training data?

Deep Leakage from Gradients

Normal Training:
forward-backward, update model weights

Differentiable Model

Pred: cat

Loss

Gradients
Deep Leakage from Gradients

Normal Training:
- forward-backward, update model weights

Differentiable Model

Pred: cat

Loss

MSE

Normal Training:
- forward-backward, update the inputs

Differentiable Model

Pred: [random]

Loss
Recovering Visualization (bs=1)

Model: ResNet18 Dataset: CIFAR100 Optimizer: LBFGS 300 iters
Recovering Visualization (bs=8)

Model: ResNet18 Dataset: CIFAR100 Optimizer: LBFGS 300 iters
Experiment on Bert

- For discrete word, the embeddings are taken as input.

Random Init: 【a2 furnished angel compromise springsteen ##lice ##ulated sal ##n ##ory moshe unitary ##tori commercial】

DLG: 【. who is jim henson ? . jim henson was a puppet ##eer .】

GT: 【[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP】】
Experiment on Bert

Iters=0: tilting fill given **less word **itude fine **nton overheard living vegas **vac **vation *f forte **dis cerambycidae ellison **don yards marne **kali

Iters=10: tilting fill given **less full solicitor other ligue shrill living vegas rider treatment carry played sculptures lifelong ellison net yards marne **kali

Iters=20: registration , volunteer applications , at student travel application open the ; week of played ; child care will be glare .

Iters=30: registration, volunteer applications, and student travel application open the first week of september . child care will be available

Original text: Registration, volunteer applications, and student travel application open the first week of September. Child care will be available.
Defense Strategy

![Graphs showing defense strategy results with various leakage types and iterations.](image-url)
Defense Strategy

[Graphs showing iteration vs. gradient match loss for different models and pruning ratios, with labels for original, IEEE-fp16, B-fp16, and various prune-ratio.]
Thank you!

Advertisement: I am applying for Ph.D.