

Design Automation for Hardware Efficient Nets

(1) Previous proxy-based approach Architecture GO! Learner Updates Non expert Hardware-Centric proxy tasks (e.g., CIFAR-10 -> ImageNet). AutoML **Limitations of Proxy** Design efficient AI hardware Hardware-Centric AutoML allows non-experts to efficiently design neural network architectures with a push-button solution that runs fast on a specific hardware. From General Design to Specialized CNN **Our Work: Previous Paradigm:** customize CNN for each platform Proxyless NAS (1) Update weight parameters Proxyless (intel) paths in a multi-path supernet. (intel) NAS Xeon[®] processor

Different platform has different properties, e.g., <u>degree of parallelism</u>, <u>cache size</u>, memory bandwidth. We need to customize our models for each platform to achieve the best accuracy-efficiency trade-off.

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware

Han Cai, Ligeng Zhu, Song Han Massachusetts Institute of Technology

Parameters

map in memory

Expected latency is a continuous function of architecture parameters. We take the expected latency as a regularization term, thereby making latency differentiable.

Conventional NAS is VERY EXPENSIVE (e.g., 48,000 GPU-hours) to run, thus relies on

- Suboptimal for the target task
- Blocks need to share the same structure
- Not optimize for the **target hardware**

Indirect Search to Direct Search

Goal: Directly learn neural network architectures on the large-scale target task and target hardware while allowing all blocks to have different structures.

Model	Top-1	Top-5	Mobile	Hardware	No	No	Search cost	-
			Latency	-aware	Proxy	Repeat	(GPU hours)	
MobileNetV1 [16]	70.6	89.5	113ms	-	-	X	Manual	-
MobileNetV2 [30]	72.0	91.0	75ms	-	-	×	Manual	
NASNet-A [38]	74.0	91.3	183ms	X	X	X	48,000	-
AmoebaNet-A [29]	74.5	92.0	190ms	X	X	X	75,600	
MnasNet [31]	74.0	91.8	76ms		X	X	40,000	200x
MnasNet (our impl.)	74.0	91.8	79ms		×	X	40,000	fowor
Proxyless-G (mobile)	71.8	90.3	83ms	X	\checkmark	 ✓ 	200	
Proxyless-G + LL	74.2	91.7	79ms		\checkmark	1	200	
Proxyless-R (mobile)	74.6	92.2	78ms		\checkmark	 ✓ 	200	

GPU hour-wise: Pruning redundant GPU memory-wise: only one path of activation is active in memory at run-time.

Making Hardware Latency Differentiable

The cost of ProxylessNAS is at the same level as regular training.

λ. Γ. 1. 1.	T 1		
Model	Top-1	Top-5	GPU latency
MobileNetV2 (Sandler et al., 2018)	72.0	91.0	6.1ms
ShuffleNetV2 (1.5) (Ma et al., 2018)	72.6	-	7.3ms
ResNet-34 (He et al., 2016)	73.3	91.4	8.0ms
NASNet-A (Zoph et al., 2018)	74.0	91.3	38.3ms
DARTS (Liu et al., 2018c)	73.1	91.0	_
MnasNet (Tan et al., 2018)	74.0	91.8	6.1ms
Proxyless (GPU)	75.1	92.5	5.1ms

Our specialized model on GPU achieves 1.1% - 3.1% higher top-1 accuracy while being 1.2× faster, compared to MobileNetV2 and MnasNet.

Path-Level Pruning and Binarization

Results on ImageNet

ProxylessNAS achieves state-of-the art accuracy (%) on ImageNet (under mobile latency constraint \leq 80ms) with <u>200× less search cost</u> in GPU hours.

ProxylessNAS consistently outperforms MobileNetV2 under various latency settings. With the same level of top-1 accuracy as MobileNetV2 1.4, it runs <u>1.8× faster</u>.

Model	Top-1	GPU	CPU	Mobile
Specialized for GPU	75.1	5.1ms	204.9ms	124ms
Specialized for CPU	75.3	7.4ms	138.7ms	116ms
Specialized for Mobile	74.6	7.2ms	164.1ms	78ms

Hardware prefers specialized models.