SFU

Colorizing Color Images

Ligeng Zhu and Brian Funt

Simon Fraser University

Introduction

Goal

Remove spatially varying color casts from images

Intuition

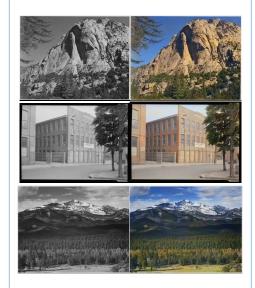
(1) Deep learning methods colorize luminance (greyscale) images quite believably

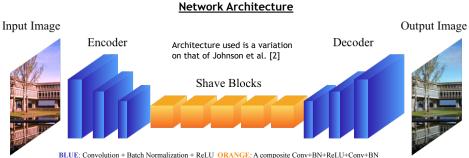
(2) Colorization methods must be encoding knowledge of the world (i.e., sky is blue)

(3) Colorization works for luminance, so why not add color channels too?

(4) Hypothesize that encoded world knowledge will help remove unnatural color casts.

Colorization of Luminance Image Examples [1]





convolutional layer in parallel with an identity map.

•	Encode				Shave Block					Decode			
	type	kernel	stride	output	type	kernel	stride	output	type	kernel	stride	output	
	conv	9x9	1x1	32	conv	3x3	1x1	128	deconv	3x3	2x2	64	
	conv	3x3	3x3	64	conv	3x3	1x1	128	deconv	3x3	2x2	32	
	conv	3x3	3x3	128	shave	-	-	128	conv	9x9	1x1	3	
					sum	-	-	128					

Kernel indicates the size of the convolution (conv) kernel. Stride controls the subsampling of the input data. Output refers to the number of convolution filters of the given size and stride used in the respective convolutional layer.

Example Results

Training and Test Sets

- * Large datasets of images under spatially-varying illumination do not exist
- * Synthesized applying spatially-varying scaling (von Kries) to R and G channels.
- * Used COCO images. 50,000 for training, 10,000 for testing
- * Linear variation across image For example ->

Median Angular Error Over All Pixels

Dataset	Median Input -> Recovered				
NUS Canon	7.9 -> 6.1				
NUS Fujifilm	7.3 -> 4.8				
NUS Nikon	7.2 -> 4.4				
NUS Samsung	7.0 -> 3.8				
NUS Sony	7.2 -> 4.7				
MS COCO	7.0 -> 3.9				

Conclusion

* Significantly reduces spatially-varying color casts

- * End-to-End processing
- * Eliminates traditional illumination-estimation step

References

[1] S. lizuka, E. Simo-Serra, and H. Ishikawa. Let there be color!: Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. Proc. of SIGGRAPH 2016, 35(4):110:1-110:11, 2016.

[2] J. Johnson, A. Alahi, and Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. ECCV 2016

Contact

Ligeng Zhu: lykenz@sfu.ca Brian Funt: funt@sfu.ca

For source code and paper scan