
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

Goal

Remove spatially varying color casts from images

Intuition

(1) Deep learning methods colorize luminance (greyscale)
images quite believably

(2) Colorization methods must be encoding knowledge of
the world (i.e., sky is blue)

(3) Colorization works for luminance, so why not add color
channels too?

(4) Hypothesize that encoded world knowledge will help
remove unnatural color casts.

Introduction

Colorization of Luminance Image Examples [1]

Network Architecture

Example Results

Training and Test Sets

* Large datasets of images under spatially-varying
illumination do not exist

* Synthesized applying spatially-varying scaling (von Kries)
to R and G channels.

* Used COCO images. 50,000 for training, 10,000 for testing

* Linear variation across image
For example —>

Median Angular Error Over All Pixels

Contact

Ligeng Zhu: lykenz@sfu.ca
Brian Funt: funt@sfu.ca

For source code and paper scan ==>

Simon Fraser University
Ligeng Zhu and Brian Funt

Colorizing Color Images

BLUE: Convolution + Batch Normalization + ReLU ORANGE: A composite Conv+BN+ReLU+Conv+BN
convolutional layer in parallel with an identity map.

Colorizing Color Images
Ligeng Zhu and Brian Funt

Simon Fraser University

Introduction

Color quality may su�er from improper white bal-
ance and other factors such as inadequate camera
characterization. In this project, we propose an
method of improving color quality by colorizing it.
It is worth noting that compared to previous meth-
ods, our approach is

• Pixel-level enhancement
• Require no human interaction
• Stable to various noise

Figure 1: Figure caption

Methods

Lorem ipsum dolor sit amet, consectetur adip-
iscing elit. Sed laoreet accumsan mattis. Integer
sapien tellus, auctor ac blandit eget, sollicitudin vi-
tae lorem. Praesent dictum tempor pulvinar. Sus-
pendisse potenti. Sed tincidunt varius ipsum, et
porta nulla suscipit et. Etiam congue bibendum fe-
lis, ac dictum augue cursus a. Donec magna eros,
iaculis sit amet placerat quis, laoreet id est. In ut
orci purus, interdum ornare nibh. Pellentesque pul-
vinar, nibh ac malesuada accumsan, urna nunc con-
vallis tortor, ac vehicula nulla tellus eget nulla. Nul-
lam lectus tortor, consequat tempor hendrerit quis,
vestibulum in diam. Maecenas sed diam augue.

Network Architecture

Figure 2: BLUE: Conv-BN-ReLU Orange: Residual Concat(Conv-BN-ReLU-Conv-BN, Identity)

Results

Original

Input Recovered

Mean Angle 7.9 Mean Angle 4.2

Mean Angle 9.5 Mean Angle 4.8

Mean Angle 6.0 Mean Angle 4.5

Mean Angle 5.9 Mean Angle 3.2

Original

Input Recovered

Mean Angle 10 Mean Angle 6.6

Mean Angle 11 Mean Angle 6.0

Mean Angle 11 Mean Angle 5.0

Mean Angle 13 Mean Angle 4.1

Original

Input Recovered

Mean Angle 15 Mean Angle 8.2

Mean Angle 8.2 Mean Angle 7.2

Mean Angle 7.0 Mean Angle 5.7

Mean Angle 8.9 Mean Angle 6.4

Implementation Details

Loss criterion:
Loss(Pred, GT) = ||Pred ≠ GT ||22

Data Preparation
IRB(x, y) = IRB(x, y) ú random(0.6, 1.4)

IRB(x, y) = IRB(x, y) ú interp(0.6, 1.4, x or y)

Training Settings
• Hardware: Nvidia GTX 1080Ti + I7-6850k
• Optimizer: SGD, Batch Size: 30, LR: 0.1

Angular Error

Dataset Median Worst 25%
NUS Canon 7.9 -> 6.1 13 -> 9.8
NUS Fujifilm 7.3 -> 4.8 12 -> 7.7
NUS Nikon 7.2 -> 4.4 12 -> 11

NUS Samsung 7.0 -> 3.8 13 -> 7.1
NUS Sony 7.2 -> 4.7 12 -> 7.9
MS COCO 7.0 -> 3.9 12 -> 7.1

Contact Information
• Ligeng Zhu: lykenz@sfu.ca
• Brian Funt: funt@cs.sfu.ca

For source code and more demos,
scan the QR code ==>

Dataset Median
Input -> Recovered

NUS Canon 7.9 -> 6.1

NUS Fujifilm 7.3 -> 4.8

NUS Nikon 7.2 -> 4.4

NUS Samsung 7.0 -> 3.8

NUS Sony 7.2 -> 4.7

MS COCO 7.0 -> 3.9

References

[1] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be color!: Joint end-to-end
learning of global and local image priors for automatic image colorization with
simultaneous classification. Proc. of SIGGRAPH 2016, 35(4):110:1–110:11, 2016.

[2] J. Johnson, A. Alahi, and Fei-Fei. Perceptual losses for real-time style transfer
and super-resolution. ECCV 2016

Architecture used is a variation
on that of Johnson et al. [2]

Conclusion
* Significantly reduces spatially-varying color casts

* End-to-End processing

* Eliminates traditional illumination-estimation step

Figure 1: Overview of the proposed color-by-colorization network for automatic white balancing of color images. Blue indicates a
composition of a convolutional (conv) layer, a batch normalization (BN) layer, and a rectified linear unit (ReLU). Orange indicates a
block that includes a shave layer in parallel to a composite Conv-BN-ReLU-Conv-BN convolutional layer. The results from the parallel
paths are then summed.

Encode Shave Block Decode
type kernel stride output
conv 9x9 1x1 32
conv 3x3 3x3 64
conv 3x3 3x3 128

type kernel stride output
conv 3x3 1x1 128
conv 3x3 1x1 128
shave - - 128
sum - - 128

type kernel stride output
deconv 3x3 2x2 64
deconv 3x3 2x2 32
conv 9x9 1x1 3

Table 1: Specifications of the different components used in the color-by-colorization network. Kernel indicates the size of the convolution
(conv) kernel. Stride controls the subsampling of the input data. Output refers to the number of convolution filters of the given size and
stride used in the respective convolutional layer.

by a factor of 64, while the number of feature maps increases from
3 to 128.

Shave Block: A typical neural network simply stacks layers
with connections occurring only between adjacent layers. How-
ever, recently Kaiming He et al. [9] showed the advantage of
adding ‘skip connections’ between non-adjacent layers. Given
the apparent effectiveness of this strategy, we include in the net-
work design a Shave Block having two branches, one branch in-
cluding two Conv layers and the other including one Shave layer.
The Shave layer is similar to an identity layer but has its output
rescaled to match the size of the output of the other branch. This
allows the network to skip conv layers even when the dimensions
of the layers’ outputs do not match.

Decode/Output: After the last Shave block finishes distill-
ing information, two deconv layers, which are followed by Batch-
Norm [8] and ReLU, expand the resulting feature maps back to
the original image dimensions. A conv layer then further pro-
cesses the result. A Tanh activation function follows the last layer
to ensure the results are in the range [�1,1].

Implementation Details
Since the goal of the network is to predict plausible colors

from an imperfect input color image, the network’s loss function
is defined as

Loss(Ipredict , Itrue)=
Âi, j2M,c2{R,G,B}(Ipredict(i, j,c)� Itrue(i, j,c))2

3⇤N

where M is the matrix storing the RGB values from the N image
pixels.

The network minimizes the loss function Loss(Ipredict , Itrue).
Since all pixel values are normalized to [�1,1] in experiments, we
use Tahn as the activation function in the output layer.

Tanh(x) =
ex � e�x

ex + e�x 2 (�1,1)

Dataset
CNNs require a large volume of training data, usually 5,000

images or more. Unfortunately, existing color constancy datasets
(NUS Color Constancy [10], SFU-Gray-Ball [11] and Gehler Col-
orchecker dataset [12] are not that large. As a result, we start with
the Microsoft COCO [4] dataset (a large-scale dataset originally
developed for object detection, segmentation, and captioning) and
modify it. COCO includes 80,000 images for training, 40,000 im-
ages for validation and 40,000 images for testing.

We generate training data by perturbing the COCO images
using various different transformations. For training, a perturbed
image and its corresponding original image are taken as the input
and ground truth, respectively. The perturbation transformations
used are as follows.

1. Global von Kries Transformation: For numbers R1,R2 cho-
sen randomly from the interval (0.6,1.4)

IR(x,y) = IR(x,y)⇤R1

IB(x,y) = IB(x,y)⇤R2
(1)

2. Linearly Interpolated von Kries Transformation in the x-
direction or the y-direction.

IR(x,y) = IR(x,y)⇤ interp(0.6,1.4)
IB(x,y) = IB(x,y)⇤ interp(0.6,1.4)

(2)

The interpolation can be either increasing or decreasing.

Kernel indicates the size of the convolution (conv) kernel. Stride controls the subsampling of the input data.
Output refers to the number of convolution filters of the given size and stride used in the respective
convolutional layer.

