

Attribute Recognition from Adaptive Parts An end-to-end learning approach for localized attribute recognition

Luwei Yang¹, Ligeng Zhu¹², Yichen Wei³, Shuang Liang⁴, Ping Tan¹ ¹Simon Fraser University, ²Zhejiang University ³Microsoft Research Asia, ⁴Tongji University

Introduction

- Attribute recognition is usually treated as classification of the whole object. This is undesirable for localized attributes where only local regions are useful.
- Works in [1, 2] show part-based approach has better performance, but they addressed the problem as two-step approach: parts are firstly detected and then used for attribute recognition.
- Inspired by the recent spatial transformer network [3], we proposed an end-to-end deep learning approach to optimize part detection for attribute recognition.

Adaptive parts **Key Points Prediction Parameterize** fc layers Aspect Ratio Points subset function tuple Loss Selector Bilinear **Matrix** Sampler **Adjustment**

The Adaptive Part is responsible for learning the part localization for a certain attribute:

- Initial bounding box: $b_t = [w_t, h_t, x_t, y_t]$
- Learnable adjustment: $\Delta = [\Delta_w, \Delta_h, \Delta_x, \Delta_y]$
- The final bounding box is encoded by the wrapping matrix:

$$\theta_t = \begin{bmatrix} w_t(1+\Delta_w) & 0 & x_t+\Delta_x \\ 0 & h_t(1+\Delta_h) & y_t+\Delta_y \end{bmatrix}.$$
(1)

The Aspect Ratio Loss is introduced to restrict the aspect ratio of bounding box:

• if
$$h_t(1 + \Delta_h) > w_t(1 + \Delta_w)$$
:
$$L_r^t = \frac{1}{2} \{ [\alpha [h_t(1 + \Delta_h)]^2 - [w_t(1 + \Delta_w)]^2 \}_+$$
(2)

• if $w_t(1 + \Delta_w) > h_t(1 + \Delta_h)$:

$$L_r^t = \frac{1}{2} \{ [\alpha [w_t (1 + \Delta_w)]^2 - [h_t (1 + \Delta_h)]^2 \}_{+}$$
(2)

• Examples:

 $RatioLoss(\times) \quad RatioLoss(\sqrt{\ })$

References

- [1] Lubomir Bourdev, Subhransu Maji, and Jitendra Malik. Describing people: A poselet-based approach to attribute classification. In *IEEE International* Conference on Computer Vision (ICCV), 2011.
- [2] Ning Zhang, Manohar Paluri, Marc'Aurelio Ranzato, Trevor Darrell, and Lubomir Bourdev. Panda: Pose aligned networks for deep attribute modeling. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
- [3] Max Jaderberg, Karen Simonyan, and Andrew Zisserman. Spatial transformer networks. In Advances in Neural Information Processing Systems (NIPS), 2015.

Experiment on Augmented MPII

Table below is based on augmented MPII with VGG-16.

- Full: The pipeline uses whole image as input and is considered as lower bound.
- STN: Single spatial transformer module without feedback.
- **Separate**: localize the key points first, then do attribute recognition separately.
- Ours: Adaptive parts detector initialized by key points.
- Oracle: Similar to Separate, but it uses ground-truth key points directly. This is taken as upper bound of all methods.

Attribute/Pipeline	Full	STN	Separate	Ours	Oracle
Helmet	81.76	80.58	57.60	83.53	84.04
HasHat	79.16	78.18	57.51	81.21	83.75
NoHat	96.39	96.78	88.30	96.45	97.15
Avg. Accuracy	84.25	83.96	74.00	86.02	86.16
LongSleeve	83.62	84.22	83.51	87.89	88.52
Vest	80.38	80.64	80.86	81.57	83.49
ShortSleeve	88.99	88.67	88.43	91.35	92.76
Naked	49.73	54.99	47.43	61.18	49.41
Avg. Accuracy	73.60	75.68	74.51	79.68	78.94
Jean	67.75	69.18	67.31	69.58	73.55
Dress	26.30	34.81	20.98	38.45	37.81
Shorts	91.46	91.21	89.42	93.42	92.97
Trousers	89.04	89.51	86.96	90.83	90.90
Avg. Accuracy	79.00	80.82	78.71	82.22	82.25