
https://mcunet.mit.edu

Ligeng Zhu

Algorithm-System
Co-Design for TinyML

ligeng@mit.edu

MIT

mailto:ligeng@mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Today’s AI is too BIG
Better model always comes with higher computational cost (vision)

2

0 1 2 3 4 5 6 7 8 9
MACs (Billion)

69

71

73

75

77

79

81
Im

ag
eN

et
 T

op
-1

 a
cc

ur
ac

y
(%

)

2M 4M 8M 16M 32M 64M

MBNetV2

ShuffleNet

IGCV3-D

MobileNetV1

InceptionV

DenseNet-121

DenseNet-169

ResNet-50

ResNetXt-5
InceptionV

DenseNet-26

DPN-92

ResNet-101

X-ception

ResNetXt-101

#Parameter

Figures from Once-for-all project page.

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Today’s AI is too BIG
Better model always comes with higher computational cost (NLP)

3

0

36

72

108

144

180

2017 2018 2020 2021

NLP model size is increasing exponentially

GPT
0.11B

MegatronLM
8.3B

T-NLG
17BGPT-2

1.5B

M
od

el
 S

iz
e

(#
P

ar
am

s
in

 B
ill

io
n)

Year

BERT
0.34BTransformer

0.05B

GPT-3
170B

175 Billion model parameters

8 Million web pages

3 Million GPU hours*

*Measured on Nvidia A100
Figures from Microsoft Turing Project

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Deep Learning Going “Tiny”
Cloud → Mobile → Tiny

4

data

prediction

• Data uploaded to the cloud for inference/training
Cloud AI

GPUs/TPUs

ResNet

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Deep Learning Going “Tiny”
Cloud → Mobile → Tiny

5

Cloud AI Mobile AI Tiny AI

GPUs/TPUs

ResNet

Smartphones

MobileNet

IoT/Microcontrollers

MCUNet

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Deep Learning Going “Tiny”
Squeezing deep learning into IoT devices
• Billions of IoT devices around the world based on microcontrollers

• Low-cost: low-income people can afford access. Democratize AI.

• Low-power: green AI, reduce carbon

6

#U
ni

ts

(B
illi

on
)

0

20

40

12 14 16F18F

Ubiquitous Low-cost

($0.1 - $10)

Low-power

(mW)

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Deep Learning Going “Tiny”
Squeezing deep learning into IoT devices
• Billions of IoT devices around the world based on microcontrollers

• Low-cost: low-income people can afford access. Democratize AI.

• Low-power: green AI, reduce carbon

• Various applications

7

Personalized Healthcare

…

Smart Manufacturing Precise AgricultureSmart Home

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

TinyML is Challenging
Memory size is too small to hold DNNs

8

Cloud AI Mobile AI Tiny AI

Memory (Activation)

Storage (Weights)

32GB 4GB

256GB

320kB

1MB~TB/PB

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

TinyML is Challenging
Memory size is too small to hold DNNs

9

Cloud AI Mobile AI Tiny AI

Memory (Activation)

Storage (Weights) ~TB/PB

4GB

256GB

320kB

1MB13,000x
smaller

100,000x
smaller

32GB

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Overview

10

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]

On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

MCUNetV1

Tiny Image Recognition

MCUNetV2

Higher Resolution for Object

detection, etc.

MCUNetV3

Tiny On-Device Training

https://tinytraining.mit.edu

MCUNet: System-Algorithm Co-Design for TinyML https://mcunet.mit.edu

MCUNetV1 - Classification
Tiny vision application: visual wake words

11
Visual wake words dataset. [Chowdhery et al., arXiv 2019]

https://mcunet.mit.edu

MCUNet: System-Algorithm Co-Design for TinyML https://mcunet.mit.edu

MCUNetV2: Detection
Advancing object detection by allowing a larger resolution

12

Face/mask detection Person detection

https://mcunet.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Overview

13

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]

On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

MCUNetV1

Tiny Image Recognition

MCUNetV2

Higher Resolution for Object

detection, etc.

MCUNetV3

Tiny On-Device Training Training

Inference

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Overview

14

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]

On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

MCUNetV1

Tiny Image Recognition

MCUNetV2

Higher Resolution for Object

detection, etc.

MCUNetV3

Tiny On-Device Training

System Algorithm

Co-design

https://tinytraining.mit.edu

System-Algorithm Co-Design for TinyML https://mcunet.mit.edu/

Tiny On-Device Training

15

- Sparse Update
- Tiny Training Engine (TTE)

On-Device Training Under 256KB SRAM [Lin et al., NeurIPS 2022]

https://mcunet.mit.edu/

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Can We Learn on the Edge?

●On-device learning:

●customization by adapting to user data / life-long learning

●better privacy, lower cost, empower AIoT with limited connectivity

16

User Intelligent Edge Devices

New and Sensitive

Data

…

Cloud Server

On-device Learning

Cloud-based Learning

data cannot be sent to the  
cloud for privacy reason

From tinyML inference to training

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Can We Learn on the Edge?

●On-device learning:

●customization by adapting to user data / life-long learning

●better privacy, lower cost, empower AIoT with limited connectivity

17

From tinyML inference to training

A virtuous cycle:

●Training is more expensive than inference

●For example, store intermediate activation, extra back-propagation, etc.

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Training Memory is the Key Bottleneck

18

0

125

250

375

500
452

20

M
bV

2
M

em
or

y
Fo

ot
pr

in
t (

M
B)

Inference
Batch Size = 1

Training
Batch Size = 8

MCU: 256KB SRAM

Raspberry Pi 1 DRAM
256MB

• Edge devices have tight memory constraints. The training memory footprint of neural networks
can easily exceed the limit.

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

On-Device Training Under 256KB Memory

19

• Training is more expensive than inference due to back-propagation, making it hard to fit IoT
devices (e.g., MCU only has 256KB SRAM).

+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

0.1 MB 1 MB 10 MB 100 MB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x

2300x

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

On-Device Training Under 256KB Memory

20

• Training is more expensive than inference due to back-propagation, making it hard to fit IoT
devices (e.g., MCU only has 256KB SRAM).

+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

0.1 MB 1 MB 10 MB 100 MB

5.7 MB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x

2300x

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

On-Device Training Under 256KB Memory

21

1. Quantization-aware
scaling

2. Sparse layer/tensor
update

3. Tiny Training
Engine

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

On-Device Training Under 256KB Memory

22

1. Quantization-aware
scaling

2. Sparse layer/tensor
update

3. Tiny Training
Engine

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

1. Quantization-Aware Scaling (QAS)
Real quantized graphs save memory, but are hard to quantize

23

(a) Fake Quantization  
(quantization aware training)

Most intermediate tensors are still in FP32 format in fake quantization,

thus cannot save memory footprint

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

✓

1. Quantization-Aware Scaling (QAS)
Real quantized graphs save memory, but are hard to quantize

24

(b) Real Quantization  
(inference/on-device training)

(a) Fake Quantization  
(quantization aware training)

All tensors are in int8/int32 format for real quantization,

thus save memory footprint, but leading to optimization difficulty

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

1. Quantization-Aware Scaling (QAS)
Quantized graphs save memory, but are hard to quantize

25

Difficult optimize:

• Mixed precisions: int8/int32/fp32…

• Lack BatchNorm

75.4

86.0

Performance Comparison (average on 10 datasets)

10.6%
top-1↓

To
p-

1
A

cc
ur

ac
y

(%
)

FP32
SGD

Int8
SGD

(a) Real Quantization

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

1. Quantization-Aware Scaling (QAS)
Quantization leads to distorted gradient magnitudes

26

- Why is the training convergence worse?  
- The scale of weight and gradients does not match in real
quantized training!

-5

5

15

25

35
fp32 int8

Tensor Index

lo
g 1

0(
∥W

∥/
∥G

∥)

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Quantization overview

Per Channel scaling

Weight and gradient ratios are off by S−2
W

Thus, re-scale the gradients

1. Quantization-Aware Scaling (QAS)
QAS addresses the optimization difficulty of quantized graphs

27

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

-5

5

15

25

35
fp32 int8 int8+QAS

Tensor Index

lo
g 1

0(
∥W

∥/
∥G

∥)

QAS aligns the W/G
ratio with fp32

1. Quantization-Aware Scaling (QAS)
QAS addresses the optimization difficulty of quantized graphs

28

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

1. Quantization-Aware Scaling (QAS)
QAS addresses the optimization difficulty of quantized graphs

29

Without QAS, poor convergence

With QAS, better convergence

After applying QAS, the convergence of real quantized is stable.

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

86.9
84.5

64.8

75.4

86.0

Extra memory
(3x)

To
p-

1
A

cc
ur

ac
y

(%
)

FP32 SGD Int8 SGD Int8 LARS Int8 Adam Int8 QAS

(ours)

1. Quantization-Aware Scaling (QAS)
QAS addresses the optimization difficulty of quantized graphs

30

Improve accuracy

QAS improves the accuracy over naive int8 training, and shows
no inferior performance than fp32 results.

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

On-Device Training Under 256KB Memory

31

1. Quantization-aware
scaling

2. Sparse layer/tensor
update

3. Tiny Training
Engine

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Training Memory is the Key Bottleneck

32

ai+1 = aiWi + bi

∂L
∂Wi

= aT
i

∂L
∂ai+1

Forward:

Backward:

Answer: Because of intermediate activations

• Inference does not need to store activations, training does.

• Activations grows linearly with batch size, which is always 1 for inference.

• Even with bs=1, activations are usually larger than model weights.

Question: Why training memory is much larger than inference?

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Training Memory is the Key Bottleneck

33

• Activation is the main bottleneck for on-device learning, not parameters.

0

200

400

600

800

Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

6.9x larger

Activation is the
main bottleneck,
not parameters.

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Training Memory is the Key Bottleneck

34

• Activation is the main bottleneck for on-device learning, not parameters.

• Previous methods focus on reducing the number of parameters or

FLOPs, while the main bottleneck does not improve much.

0

200

400

600

800

Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

The main bottleneck does
not improve much.

6.9x larger

Activation is the
main bottleneck,
not parameters.

4.3x

1.1x

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Full update

35

Updating the whole model is too expensive:

• Need to save all intermediate activation (quite large)

• Need to store the updated weights in SRAM (Flash is read-only)

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FCweights
biases

Model: ProxylessNAS-Mobile

Far beyond the on-device
learning capacity

0

80

160

240

320

400
Full Last Bias+Last

Memory Cost (MB)
50

61

72

83

94

Cars Top1 (%)

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Last layer update

36

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

Updating only the last cheap

• No need to back propagating to previous layers

• But the accuracy is low and not ideal.

Model: ProxylessNAS-Mobile

weights
biases

Significant
accuracy

 degradation!

0

80

160

240

320

400
Full Last Bias+Last

Memory Cost (MB)
50

61

72

83

94

Cars Top1 (%)

12x
smaller

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Bias-only update

37

Updating the only the bias part

• No need to store the activations

• Back propagating to the first layer.

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

Model: ProxylessNAS-Mobile

Still a
performance

gap

0

80

160

240

320

400
Full Last Bias+Last

Memory Cost (MB)
50

61

72

83

94

Cars Top1 (%)

ai+1 = aiWi + bi

∂L
∂Wi

= aT
i

∂L
∂ai+1

,
∂L
∂bi

=
∂L

∂ai+1
=

∂L
∂ai+2

WT
i+1

Forward:

Backward:

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Updated synapses are sparse

38
Peter Huttenlocher (1931–2013) [Walsh, C. A., Nature 2013]

[2]

Data Source: 1, 2Do We Have Brain to Spare? [Drachman DA, Neurology 2004]
Slide Inspiration: Alila Medical Media

Time
Newborn 2-4 years old AdultAdolescence

2500 synapses
per neuron

15000 synapses
per neuron

7000 synapses
per neuron

[1]

[1]

K-12 education

Synapses are getting "sparse"

https://tinytraining.mit.edu
https://n.neurology.org/content/64/12/2004
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
https://n.neurology.org/content/64/12/2004
https://www.youtube.com/watch?v=0S0jKbh6R1I
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Some layers are more important than others

39

-4%

-1%

2%

5%

8%

11%

14%

0 5 10 15 20 25 30 35 40

update all channels
update 1/2 channels
update 1/4 channels
update 1/8 channels

layer index to update weight

re
la

tiv
e

ac
c.

 g
ai

n

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Some layers are more important than others

40

-4%

-1%

2%

5%

8%

11%

14%

0 5 10 15 20 25 30 35 40

update all channels
update 1/2 channels
update 1/4 channels
update 1/8 channels

layer index to update weight

re
la

tiv
e

ac
c.

 g
ai

n

1. Later layers contribute more to the accuracy.

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Some layers are more important than others

41

-4%

-1%

2%

5%

8%

11%

14%

0 5 10 15 20 25 30 35 40

update all channels
update 1/2 channels
update 1/4 channels
update 1/8 channels

layer index to update weight

re
la

tiv
e

ac
c.

 g
ai

n

1. Later layers contribute more to the accuracy.

2. First point-wise conv are more important to accuracy.

First point-wise conv

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Some layers are more important than others

42

-4%

-1%

2%

5%

8%

11%

14%

0 5 10 15 20 25 30 35 40

update all channels
update 1/2 channels
update 1/4 channels
update 1/8 channels

layer index to update weight

re
la

tiv
e

ac
c.

 g
ai

n

1. Later layers contribute more to the accuracy.

2. First point-wise conv are more important to accuracy.

3. The more channels being updated, the higher the accuracy.

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update

43

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

Model: ProxylessNAS-Mobile

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update

44

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

Sparse layer backpropagation
Model: ProxylessNAS-Mobile

• Sparse layer update: no need to store activation

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update

45

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

Sparse layer backpropagation

Sparse tensor backpropagation

Model: ProxylessNAS-Mobile

Reduce by 4x
Activation to store: (N, M)

Weight in SRAM: (M, H)

G.T
X

(dW).T

=

(H, N) (N, M) (H, M)dy
dw

:

Activation to store: (N, 0.25*M)

Weight in SRAM: (0.25*M, H)

G.T
X

(dW).T

=

(H, N) (N, M) (H, M)

X
(dw).T

dy
dw

:

• Sparse layer update: no need to store activation

• Sparse tensor update: only store a subset of the activations.

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update

46

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

Sparse layer backpropagation

Sparse tensor backpropagation

Backpropagation stops here
Model: ProxylessNAS-Mobile

• Sparse layer update: no need to store activation

• Sparse tensor update: only store a subset of the activations.

• Sparse update: no need to back propagate the early layers

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update

47

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

Sparse layer backpropagation

Sparse tensor backpropagation

Backpropagation stops here
Model: ProxylessNAS-Mobile

69

71

73

75

77

40 155 270 385 500

update last k biases update last k layers sparse update (ours)

(a) MCUNet-5FPS

A
ve

ra
ge

 A
cc

 (%
)

Extra Memory (KB)

64

66

68

70

72

40 110 180 250 320

(b) MbV2-w0.35
Extra Memory (KB)

(c) Proxyless-w0.3
Extra Memory (KB)

65

67

69

71

73

75

40 110 180 250 320

4.5× smaller
higher acc

7.5× smaller

≤50kB

≤75kB

≤100kB
≤150kB

545

Add the full network accuracy here (deprecated)

upper
bound

524

7.1× smaller
upper
bound upper

bound

64

66

68

70

72

74

76

78

40 155 270 385 500

(c) MCUNet-5FPS

A
ve

ra
ge

 A
cc

 (%
)

Extra Memory (KB)

(a) MbV2-w0.35
Extra Memory (KB)

(b) Proxyless-w0.3
Extra Memory (KB)

60

63

66

69

72

75

40 110 180 250 320

4.5× smaller
higher acc upper

bound

524

7.1× smaller
upper
bound

swap order and add fc-only results

59
61
63
65
67
69
71
73

40 110 180 250 320

update last k biases update last k layers sparse update (ours) Untitled 1

7.5× smaller

545

≤50kB

≤75kB
≤100kB ≤150kB

classifier only accuracy

upper
bound

classifier only accuracy classifier only accuracy

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Update Paradigms Comparison

48

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

(a) Full update

(b) Last-only update

(c) Bias-only update

(d) Sparse layer/Sparse tensor update

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

On-Device Training Under 256KB Memory

49

1. Quantization-aware
scaling

2. Sparse layer/tensor
update

3. Tiny Training
Engine

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)
Existing frameworks cannot fit
• Runtime is heavy

• Heavy dependencies and large binary size (>100MB static memory)

• Auto-diff at runtime; low edge efficiency

• Memory is heavy

• A lot of intermediate (and unused) buffers

• Has to compute full gradients

50
+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x 2300x

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)
Workflow of conventional training engine

51

Data Weight

MatMul

Out

1. Computation Graph
(forward)

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)
Workflow of conventional training engine

52

f(x) → f′￼(x)

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

1. Computation Graph
(forward)

2. AutoDiff

3. Computation Graph
(backward)

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)
Workflow of conventional training engine

53

f(x) → f′￼(x)

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

4. Execution

Engine

1. Computation Graph
(forward)

2. AutoDiff

3. Computation Graph
(backward)

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)
Workflow of conventional training engine

54

1. Computation Graph
(forward)

2. AutoDiff

f(x) → f′￼(x)

3. Computation Graph
(backward)

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

4. Execution

Engine

Conventional training framework focus on flexibility,

and the auto-diff is performed at runtime.

Thus, any optimizations will lead to runtime overhead.: Runtime

: Compile-Time

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)
TTE: Move workload from runtime to compile time

55

TTE moves most workload from runtime to compile-time,

thus minimizes the runtime overhead,

also enables opportunities for extensive graph optimizations.
: Runtime

: Compile-Time

1. Computation Graph
(forward)

2. AutoDiff

f(x) → f′￼(x)

3. Computation Graph
(backward)

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

4. Execution

Engine

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

56

fn (%x: Tensor[(10, 10), float32],
 %weight: Tensor[(10, 10), float32],
 %bias: Tensor[(10), float32]),
 %grad: Tensor[(10), float32]),
{
 # forward
 %0 = multiply(%x, %weight);
 %1 = add(%0, %bias);
 # backward
 %3 = multiply(%grad, %weight);
 %4 = transpose(%grad);
 %5 = multiply(%4, %x);
 %6 = sum(%grad, axis=-1);
 (%3, %5, %6)
}

====> dy / dx

====> dy / dw
====> dy / db

Example from a matrix
multiplication with full update

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

y = mul(x, w) + b

dy/dx = mul(G, w)

dy/db = sum(G)
dy/dw = mul(GT, X)

Forward

Backward

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

57

fn (%x: Tensor[(10, 10), float32, needs_grad=True],
 %weight: Tensor[(10, 10), float32, needs_grad=False],
 %bias: Tensor[(10), float32, needs_grad=True],
 %grad: Tensor[(10), float32]),
{
 # forward
 %0 = multiply(%x, %weight);
 %1 = add(%0, %bias);
 # backward
 %3 = multiply(%grad, %weight);
 %4 = transpose(%grad);
 %5 = multiply(%4, %x);
 %6 = sum(%grad, axis=-1);
 (%3, %5, %6)
}

Annotate whether a tensor  
requires gradient or not

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

====> dy / dx

====> dy / dw
====> dy / db

y = mul(x, w) + b

dy/dx = mul(G, w)

dy/db = sum(G)
dy/dw = mul(GT, X)

Forward

Backward

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

58

fn (%x: Tensor[(10, 10), float32, needs_grad=True],
 %weight: Tensor[(10, 10), float32, needs_grad=False],
 %bias: Tensor[(10), float32, needs_grad=True],
 %grad: Tensor[(10), float32]),
{
 # forward
 %0 = multiply(%x, %weight);
 %1 = add(%0, %bias);
 # backward
 %3 = multiply(%grad, %weight);
 %4 = transpose(%grad);
 %5 = multiply(%4, %x);
 %6 = sum(%grad, axis=-1);
 (%3, %5, %6)
}

Remove unnecessary computations
from DAG via dependency analysis

and dead-code elimination.

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

====> dy / dx

====> dy / dw
====> dy / db

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

59

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

Freely annotate ANY parameters

TTE will trim the computation accordingly.

fn (%x: Tensor[(10, 10), float32, needs_grad=False],
 %weight1: Tensor[(10, 10), needs_grad=False],
 %bias1: Tensor[(10), needs_grad=False],
 %weight2: Tensor[(10, 10), needs_grad=True],
 %bias2: Tensor[(10), needs_grad=True],
 …………
 %grad: .., float32]),
{
 # …
}

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

60

Automatically remove
the buffers of pruned

gradients from the
computation graph.

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

fn (%x: Tensor[(10, 10), float32],
 %weight: Tensor[(10, 10), float32],
 %bias: Tensor[(10), float32]),
 %grad: Tensor[(10), float32]),
{
 # forward
 %0 = multiply(%x, %weight);
 %1 = add(%0, %bias);
 # backward
 %3 = multiply(%grad, %weight);
 %4 = transpose(%grad)
 %5 = multiply(%4, %x);
 %6 = sum(%grad, axis=-1);
 (%3, %5, %6)
}

fn (%x: Tensor[(10, 10), float32, needs_grad=True],
 %weight: Tensor[(20, 10), float32, needs_grad=0.5],
 %bias: Tensor[(20), float32, needs_grad=True],
 %grad: Tensor[(10, 20), float32]),
{
 # forward
 %0 = multiply(%x, %weight);
 %0.1 = slice(%x, begin=[0, 0], ends=[10, 10]);
 %1 = add(%0, %bias);
 # backward
 %3 = multiply(%grad, %weight);
 %4 = transpose(%grad)
 %5 = multiply(%4, %0.1);
 %6 = sum(%grad, axis=-1);
 (%3, %5, %6)
}

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

• Tiny Training Engine supports backward graph pruning and sparse update at IR-level.

• After graph pruning, un-used weights and sub-tensors are pruned from DAG => 6.5-8.7x memory

saving

61

sparse update

Pe
ak

 M
em

 (K
B

)↓

0

1000

2000

3000

4000

560
326335

3,650

2,745
2,939

8.7x
smaller

full update

6.5x
smaller

8.4x
smaller

Sparse update results

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)
• Tiny Training Engine supports backward graph pruning and sparse update at IR-level.

• After graph pruning, un-used weights and sub-tensors are pruned from DAG => 6.5-8.7x memory

saving

62

(a) Conventional way to update parameters

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3

F: Forward, B: Backward, U: Update

Re-ordering reduces memory footprint

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)
• Tiny Training Engine supports backward graph pruning and sparse update at IR-level.

• After graph pruning, un-used weights and sub-tensors are pruned from DAG => 6.5-8.7x memory

saving

63

Operator life-cycle analysis reveals the memory
redundancy in the optimization step.

(a) Conventional way to update parameters (b) Operator re-ordering

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3Memory waste!

F0

F1

F2

F3

B0

B1

B3

U0

U1

U3

B2

Immediately released
U2

After re-ordering, the redundant memory
usage is eliminated from training.

F: Forward, B: Backward, U: Update

Re-ordering reduces memory footprint

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)
Re-ordering reduces memory footprint

64

Operator life-cycle analysis shows memory footprint
can be greatly reduced by operator re-ordering.

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)
Smaller memory usage, faster training speed

65

20x smaller memory 23x faster speed

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Tiny Training
Co-design Results

66

+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

0.1 MB 1 MB 10 MB 100 MB

5.7 MB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x

2300x

Co-design reduces the training memory by 2300x times with the same transfer accuracy.

The numbers are measured with MobilenetV2-w0.35, batch size 1 and resolution 128x128.

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 67

https://www.bilibili.com/video/BV1qv4y1d7MV/ https://youtu.be/XaDCO8YtmBw

https://tinytraining.mit.edu
https://www.bilibili.com/video/BV1qv4y1d7MV/
https://youtu.be/XaDCO8YtmBw

System-Algorithm Co-Design for TinyML https://mcunet.mit.edu/

Extending TTE to More Platforms

68

• We extend TTE to support:

• Diverse models (CNN + Transformers)

• Diverse frontends

• PyTorch

• TensorFlow

• Jax

• Diverse hardware backends

• Apple M1

• Raspberry Pi

• Smartphones

• …

Accelerate on-device training on diverse edge hardware

68

https://mcunet.mit.edu/

System-Algorithm Co-Design for TinyML https://mcunet.mit.edu/

Extending TTE to More Platforms

69

Consistently speed up training on diverse platforms

• TTE provides a systematic support for sparse update schemes for vision and NLP models, leading
to consistent memory saving at the same training accuracy

Results measured on Raspberry Pi 4B+.

69

https://mcunet.mit.edu/

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Media

70

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]

On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

(Homepage highlight) (Homepage highlight)

https://tinytraining.mit.edu

System-Algorithm Co-Design for TinyML https://mcunet.mit.edu/ 71

Open Source

Sign up here to get updates!

https://forms.gle/UW1uUmnfk1k6UJPPA

https://mcunet.mit.edu/
https://forms.gle/UW1uUmnfk1k6UJPPA

System-Algorithm Co-Design for TinyML https://mcunet.mit.edu/

Future Work
• Scale up to LLM/foundation models

• LLM models are hard to serve/fine-tune due to the huge model size

• GPU memories are not enough to serve 100 billion-parameter models

• Our techniques help democratize LLMs (e.g., quantization, sparse update, system support)

• Collaboration welcome!

72

TinyML LLM
scale down scale up

Algorithm

System

https://mcunet.mit.edu/

