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| Today’s Al is too BIG

Better model always comes with higher computational cost (vision)
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| Today’s Al is too BIG

Better model always comes with higher computational cost (NLP)
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| Deep Learning Going “Tiny”

Cloud — Mobile — Tiny

(/predlctlon

* Data uploaded to the cloud for inference/training

Cloud Al

GPUs/TPUs
ResNet
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| Deep Learning Going “Tiny”

Cloud = Mobile — Tiny

=

Cloud Al Mobile Al Tiny Al
GPUs/TPUs Smartphones loT/Microcontrollers
ResNet MobileNet MCUNet
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| Deep Learning Going “Tiny”
Squeezing deep learning into loT devices

* Billions of loT devices around the world based on microcontrollers
* Low-cost: low-income people can afford access. Democratize Al.
* Low-power: green Al, reduce carbon

40

#Units
(Billion)

20

0

12 14 16F18F

Ubiquitous Low-cost Low-power
($0.1 - $10) (MW)
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| Deep Learning Going “Tiny”
Squeezing deep learning into loT devices

* Billions of loT devices around the world based on microcontrollers
* Low-cost: low-income people can afford access. Democratize Al.

* Low-power: green Al, reduce carbon

* \arious applications

Smart Home Smart Manufacturing Personalized Healthcare Precise Agriculture
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| TinyML is Challenging

Memory size is too small to hold DNNs

Cloud Al Mobile Al Tiny Al
Memory (Activation) 32GB 4GB 320kB
Storage (Weights) ~TB/PB 256GB 1MB
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| TinyML is Challenging

Memory size is too small to hold DNNs

Cloud Al Mobile Al Tiny Al
Memory (Activation) 32GB 4GB 320kB
\ 13,000x

smaller

100,000x
smaller
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l Overview

MCUNetV1

Tiny Image Recognition

MCUNetV2

Higher Resolution for Object
detection, etc.

MCUNetV3

Tiny On-Device Training

MCUNet: Tiny Deep Learning on loT Devices [Lin et al., NeurlPS 2020]
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurlPS 2021]
On-Device Training Under 256KB Memory [Lin et al., NeurlPS 2022]
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I MCUNetV1 - Classification

Tiny vision application: visual wake words e LA O

(a) ‘Person’

(b) ‘Not-person’

Visual wake words dataset. [Chowdhery et al., arXiv 2019]
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| MCUNetV2: Detection

Advancing object detection by allowing a larger resolution

Al

Face/mask detection Person detection

MCUNet: System-Algorithm Co-Design for TinyML
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l Overview

MCUNetV1

Tiny Image Recognition

Inference

MCUNetV2

Higher Resolution for Object
detection, etc.

MCUNetV3

Tiny On-Device Training Trammg

MCUNet: Tiny Deep Learning on loT Devices [Lin et al., NeurlPS 2020]
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurlPS 2021]
On-Device Training Under 256KB Memory [Lin et al., NeurlPS 2022]
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l Overview
Co-design

MCUNetV1

Tiny Image Recognition

MCUNetV2

Higher Resolution for Object Algorithm
detection, etc.

MCUNetV3

Tiny On-Device Training

MCUNet: Tiny Deep Learning on loT Devices [Lin et al., NeurlPS 2020]
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurlPS 2021]
On-Device Training Under 256KB Memory [Lin et al., NeurlPS 2022]
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Tiny On-Device Training

- Sparse Update
- Tiny Training Engine (TTE)

On-Device Training Under 256KB SRAM [Lin et al., NeurlPS 2022]
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| Can We Learn on the Edge?

From tinyML inference to training

Cloud-based Learning

On-device Learning

'l' ||||

—>
New and Sensitive data cannot be sent to the
Data cloud for privacy reason
User Intelligent Edge Devices Cloud Server

-On-device learning:
-customization by adapting to user data / life-long learning

- better privacy, lower cost, empower AloT with limited connectivity

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 16
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| Can We Learn on the Edge?

From tinyML inference to training

A virtuous cycle:

Privacy-preserving>

= 0 <
((‘ ))) 0 |,.Q | i
@% e ‘ % |I‘1\ Learning on edge

\_ Ubiquitous Al Applications User’s Private Data On-device Larning

! ’1l‘
‘A
|
=920

-
——

Customization; Continual Learning

-On-device learning:
-customization by adapting to user data / life-long learning
- better privacy, lower cost, empower AloT with limited connectivity

- Training Is more expensive than inference

- For example, store intermediate activation, extra back-propagation, etc.
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| Training Memory is the Key Bottleneck

» Edge devices have tight memory constraints. The training memory footprint of neural networks
can easily exceed the limit.

500
)
=
— 375
g
S < Raspberry Pi 1 DRAM
O A e %17 Raspberry Pi
O 250 * 4
S0 4/ 256MB
-
e
& 125
)
=
MCU: 256KB SRAM
20
Inference Training
Batch Size = 1 Batch Size =8

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurlPS 2020]
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| On-Device Training Under 256KB Memory

* Training is more expensive than inference due to back-propagation, making it hard to fit loT
devices (e.g., MCU only has 256KB SRAM).

5256KB constraint
! 652 MB

TensorFlow (cloud)
303 MB

PyTorch (cloud)

41.5 MB
MNN (edge)

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 19
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| On-Device Training Under 256KB Memory

* Training is more expensive than inference due to back-propagation, making it hard to fit loT
devices (e.g., MCU only has 256KB SRAM).

5256KB constraint

652 MB
TensorFlow (cloud)
303 MB
PyTorch (cloud) |
: 41.5 MB
MNN (edge)—
: 5.7 MB
Tiny Training Engine I <« 7.3
. | 5 2. 9MB
+ Quantization-aware scaling | < 1 2.0x
358 KB
+ Sparse layer/tensor update E———— < 8.8x
141 KB |
+ Operator reordering gl «——— 2.4x
< 2300Xx
0.1 MB 1 MB 10 MB 100 MB
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| On-Device Training Under 256KB Memory

SRO%S

1. Quantization-aware 2. Sparse layer/tensor 3. Tiny Training
scaling update Engine

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 21
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| On-Device Training Under 256KB Memory

i

1. Quantization-aware
scaling

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 22
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l 1. Quantization-Aware Scaling (QAS)

Real quantized graphs save memory, but are hard to quantize

-----------------------------------

value range
(_67 6) .

....................................

™

(@) Fake Quantization
(quantization aware training)

Most intermediate tensors are still in FP32 format in fake quantization,
thus cannot save memory footprint
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l 1. Quantization-Aware Scaling (QAS)

Real quantized graphs save memory, but are hard to quantize

-----------------------------------

value range [
(-6,6) i

....................................

i R
(@) Fake Quantization (b) Real Quantization
(quantization aware training) (inference/on-device training)

All tensors are in int8/int32 format for real quantization,
thus save memory footprint, but leading to optimization difficulty

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 24
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l 1. Quantization-Aware Scaling (QAS)

Quantized graphs save memory, but are hard to quantize

Difficult optimize:
* Mixed precisions: int8/int32/fp32...
* Lack BatchNorm

Performance Comparison (average on 10 datasets)

L . 10.6%

> \t?p-u

Q :

o a

(a) Real Quantization § s

<

&

= .
FP32 Int8
SGD SGD
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l 1. Quantization-Aware Scaling (QAS)

Quantization leads to distorted gradient magnitudes

- Why is the training convergence worse?
- The scale of weight and gradients does not match in real
quantized training!

35 .
= — fp32 _thB |
EZSM — |
§1sv V/\V/\/\/\/\/\/\\I/\/\/\/
= |
%755

-5

Tensor Index
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l 1. Quantization-Aware Scaling (QAS)

QAS addresses the optimization difficulty of quantized graphs

Quantization overview

Vintg = cast2int8[ssp32 - (WintsXints + binesz)],

Per Channel scaling
quantize

WZSW°(W/Sw) ~ 8W°W, GV—V%8W°Gw,

Weight and gradient ratios are off by Sy =7
IWI/IGwll ~ W /swll/llsw - Gwll =[5 { WI/IG]|

Thus, re-scale the gradients
Gw = Gw -sw, Gg=Gg -sw 5. =Gg- 5"

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 27


https://tinytraining.mit.edu

l 1. Quantization-Aware Scaling (QAS)

QAS addresses the optimization difficulty of quantized graphs

~ —2 ~ . _ —2 -2 _ —2
G’V_V:GV_V GE—Gb-SW-Sx —G’b

35
— fp32 — intAS i int8+QAS

S 25 ||, - "
= | WYY
= | QAS aligns the W/G
o 5 ratio with fp32 l
o

-

Tensor Index
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l 1. Quantization-Aware Scaling (QAS)

QAS addresses the optimization difficulty of quantized graphs

Without QAS, poor convergence

6 6
g 5 2 5
— 4 3 4
£ 3 = 3
= 2 ~ )
1 1
0 10 20 30 40 0 0 10 20 30 40 50
Training Epochs Training Epochs

With QAS, better convergence

After applying QAS, the convergence of real quantized is stable.
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l 1. Quantization-Aware Scaling (QAS)

QAS addresses the optimization difficulty of quantized graphs

< Improve accuracy

— 86.0 :

>

@)

©

| -

S

O

@)

<C

S

— :

FP32 SGD Int8 SGD Int8 LARS  Int8 Adam Int8 QAS
Extra memory  (ours)
(3x)

QAS improves the accuracy over naive int8 training, and shows
no inferior performance than fp32 results.
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| On-Device Training Under 256KB Memory

la i

2. Sparse layer/tensor
update

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 31
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| Training Memory is the Key Bottleneck

Answer: Because of intermediate activations

Forward: 4,1 = aiwi T bi

oL

- oL
Back : = a;
ackward OW. j oa..

* |Inference does not need to store activations, training does.
* Activations grows linearly with batch size, which is always 1 for inference.

* Even with bs=1, activations are usually larger than model weights.

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurlPS 2020]
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| Training Memory is the Key Bottleneck

B ResNet-50

800
600

6.9x larger
400 Activation is the

main bottleneck,
200 not parameters.

, 1

Param (MB) Activation (MB)

 Activation is the main bottleneck for on-device learning, not parameters.

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurlPS 2020]
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| Training Memory is the Key Bottleneck

B ResNet-50 B MbV2-1.4

800
“', 1.1x The main bottleneck does

600 not improve much.

6.9x larger
400 Activation is the

main bottleneck,

not parameters.
200 P

v 4.3x
0

Param (MB) Activation (MB)

 Activation is the main bottleneck for on-device learning, not parameters.
* Previous methods focus on reducing the number of parameters or
FLOPs, while the main bottleneck does not improve much.

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurlPS 2020]
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| 2. Sparse Layer/Tensor Update

Full update

bIaSGSI:II:II:II:II:II:II:II:II:II:II:II:II:II:II:II:II:II:II:II:I

Model: ProxylessNAS-Mobile

weights

Updating the whole model is too expensive:
e Need to save all intermediate activation (quite large)
e Need to store the updated weights in SRAM (Flash is read-only)

B Full Last ] Bias+Last

400 94 |
320 <—— Far beyond the on-device
83 learning capacity
240
72
160
80 61
0 50
Memory Cost (MB) Cars Top1 (%)
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| 2. Sparse Layer/Tensor Update

Last layer update

Welghts-mih% -> _> ._>><_> _> ~> _> -> ->><—>><-> _> _> _> _> -> ,_> r);h:

Model: ProxylessNAS-Mobile

Updating only the last cheap
e No need to back propagating to previous layers
e But the accuracy is low and not ideal.

B Full Last ] Bias+Last

400 — 94
320 E 83 E
540 12x + Significant
smaller 72 : accu_ racy
160 ; , degradation!
: 61 :
80 ,
v v
0 50
Memory Cost (MB) Cars Top1 (%)
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| 2. Sparse Layer/Tensor Update
Bias-only update

' ' Model: ProxylessNAS-Mobil
Updating the only the bias part odel: Proxyless obile
Forward: a, , =aW,+b,

e No need to store the activations N Il oL oL oL

e Back propagating to the first layer. Backward: Sy = a; =

I ’ _
oa;, ob, oda;,, da;,,

T
i+1

B Full Last . Bias+Last
Still a
performance
gap
]

Memory Cost (MB) Cars Top1 (%)

400
320
240
160

80

On-Device Training Under 256KB Memory https://tinytraining.mit.edu
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| 2. Sparse Layer/Tensor Update

Updated synapses are sparse

15000 synapses
per neuron [1]

Q&es are getting "sparse"

——

¢ 3 per neuron
2500 synapses K-12 education
per neuron!l

7000 synapses

> Time
Newborn 2-4 years old Adolescence Adult
Do We Have Brain to Spare? [Drachman DA, Neurology 2004] Data Source: 1, 2
Peter Huttenlocher (1931-2013) [Walsh, C. A., Nature 2013] Slide Inspiration: Alila Medical Media
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https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
https://n.neurology.org/content/64/12/2004
https://www.youtube.com/watch?v=0S0jKbh6R1I
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.

| 2. Sparse Layer/Tensor Update

Some layers are more important than others

14%

® update all channels ﬂ
11% | @ wupdate 1/2 channels
update 1/4 channels

0 ; - . 1
8% ® update 1/8 channels

-4%
0 5 10 15 20 25 30 35 40

relative acc. gain

layer index to update weight
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| 2. Sparse Layer/Tensor Update

Some layers are more important than others

14%
11%
8%
5%

-1%

relative acc. gain
2
o<

-4%
0 5 10 15 20 25 30 35 40

layer index to update weight

1. Later layers contribute more to the accuracy.

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 40
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| 2. Sparse Layer/Tensor Update
Some layers are more important than others

First point-wise conv

14%
update all channels

.‘.
11% | @ update 1/2 channels
20, up(;ate 1/4 czlanne;_s
° | @ update 1/8 channels

R
o 5%
2 AA ‘ A
0 | | | |

-g ‘ - AA/A / ‘ \, 2
= 0 = & ~ \/

-4%

0 5 10 15 20 25 30 35 40

layer index to update weight

1. Later layers contribute more to the accuracy.
2. First point-wise conv are more important to accuracy.
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2. Sparse Layer/Tensor Update

Some layers are more important than others

14%
11%
8%
5%
2%
-1%

relative acc. gain

-4%

-9
7.

upd
upc
upd

ate |
ate |

upd

ate all channels

/2 channels
/4 channels

ate |

B =P -

10 15 20 25 30 35 40

layer index to update weight

1. Later layers contribute more to the accuracy.
2. First point-wise conv are more important to accuracy.
3. The more channels being updated, the higher the accuracy.

On-Device Training Under 256KB Memory

https://tinytraining.mit.edu
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| 2. Sparse Layer/Tensor Update

Sparse Layer/Tensor Update

;35353»:;x» s Gixisi 2 s
MRl iR i iRl igl gl 5‘5 i

u u u u
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Model: ProxylessNAS-Mobile
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| 2. Sparse Layer/Tensor Update

Sparse Layer/Tensor Update

53%3939?%393939*» 9393
I‘I‘I‘I‘I‘I‘I‘I‘I‘

Sparse layer backpropagation

Model: ProxylessNAS-Mobile

e Sparse layer update: no need to store activation
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| 2. Sparse Layer/Tensor Update

Sparse Layer/ Tensor Update Sparse tensor backpropagation

T Yy ¥ﬂ .-
FHEIREIAR G RGN IR R G R R R R R R E R E
ziligiigiligiigiigiigiligiigligiigi Iilﬂlﬂ Jz ilﬂlllﬂ

Sparse layer backpropagation
Model: ProxylessNAS-Mobile

e Sparse layer update: no need to store activation
e Sparse tensor update: only store a subset of the activations.

(H, N) (N, M) (H, M) (H, M)
-l [ _
Activation to store: ( Activation to store: (N, 0.25*M)
%
Weight in SRAM: (M, H) Reduce by 4x Weight in SRAM: (0.25*M, H)

On-Device Training Under 256KB Memory https://tinytraining.mit.edu
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| 2. Sparse Layer/Tensor Update

Sparse Layer/ Tensor Update Sparse tensor backpropagation

53H3§3§“¥N9 9 9 » 9343?

Backpropagation stops here

Sparse layer backpropagation
Model: ProxylessNAS-Mobile

e Sparse layer update: no need to store activation
e Sparse tensor update: only store a subset of the activations.
e Sparse update: no need to back propagate the early layers

On-Device Training Under 256KB Memory https://tinytraining.mit.edu
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| 2. Sparse Layer/Tensor Update

Sparse Layer/ Tensor Update Sparse tensor backpropagation
freeey geeens gensn ey peemes geen s peese ey peeess ‘ M OO e B D
EEHEME%E&x» SEI NS
Ebistidterielilidd b o' !I!I!Il 1 llll! i
N SR B I o S I I S ool S R R
Backpropagatlon stops here Sparse layer backpropagation
Model: ProxylessNAS-Mobile
update last k biases -®- update last k layers -®- sparse update (ours)
77 72 = 75
3 o <150kB T "
Q:/ 75 S100/ISB:_ _____________ _4__5__>_<_"smaller 70 '4 """"""""" 75><smaller """""" @ 73 /.4 ...................... 71><smaller ................ ®
................................ ® ././ ////
2 | Ao higher ac a/ — s / _— Tl e e ugper
iy bound & it bdund
= e<50kB /0 ./ 69 /.
S 71 ° 66 / ®
> 67
< .
69 64 “ da 65 a
40 155 270 3835 500 40 110 180 250 545 40 110 180 250 524
Extra Memory (KB) Extra Memory (KB) Extra Memory (KB)
(a) MCUNet-5FPS (b) MbV2-w0.35 (c) Proxyless-w0.3
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:Em:Em:im::l\:Eln:iln:Em::m:im:im:im::l\::
Do Do Do Do ;. I W R o BRI < s W BNo BB . . : -

miimiigR:imMiig:imiiR:
P iSiisSiisi IS ISt IS

IV TR HIN R E G F TR IS S TCRVE I S TR SR IR ST S TGRSR I PO R FERSE TRV FORYE IRV S PO
. — N N N N N N No) N N N No) N N N No) O N N No)
= N - M M M M M = N M M Mm = M M M M M = M = M M M M

(c) Bias-only update

............. ggggggggggggggggggi
: P i@l i@l i@l igiimEiml i
IR =R IR = =N A

= ] = ] = ] = ]
gesee TS res SEEEEre  SEsErEre e Erre SEEpEree SSEpEEEe gy s wEErErErs SmEEErEs  SEEEER

(d) Sparse layer/Sparse tensor update
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| On-Device Training Under 256KB Memory

SRO%S

3. Tiny Training
Engine
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| 3. Tiny Training Engine (TTE)

Existing frameworks cannot fit

* Runtime is heavy
» Heavy dependencies and large binary size (>100MB static memory)
 Auto-diff at runtime; low edge efficiency
* Memory is heavy
» A lot of intermediate (and unused) buffers
» Has to compute full gradients

5256KB constraint
: 652 MB

TensorFlow (cloud) —

: 303 MB
Py Torch (€10 U Cl ) |1————

41.5 MB

MNN (edge)—
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| 3. Tiny Training Engine (TTE)

Workflow of conventional training engine

1. Computation Graph
(forward)

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 51
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| 3. Tiny Training Engine (TTE)

Workflow of conventional training engine

1. Computation Graph 3. Computation Graph
(forward) (backward)

2. AutoDift

—>

MatMul
Jx) = fi(x)
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| 3. Tiny Training Engine (TTE)

Workflow of conventional training engine

1. Computation Graph 3. Computation Graph
(forward) (backward)

2. AutoDiff |
—_— 4. Execution
Jx) = f(x) Engine
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| 3. Tiny Training Engine (TTE)

Workflow of conventional training engine

1. Computation Graph 3. Computation Graph
(forward) (backward)
2. AutoDift
MatMul _— MatMul’ 4. Execution
Gi) > G

Engine

. Compile-Time Conventional training framework focus on flexibility,

and the auto-diff is performed at runtime.

- Runtime Thus, any optimizations will lead to runtime overhead.
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| 3. Tiny Training Engine (TTE)

TTE: Move workload from runtime to compile time

1. Computation Graph 3. Computation Graph
(forward) (backward)
2. AutoDift |
—_— 4. Execution
J(x) = f(x) Engine
: Compile-Time TTE moves most workload from runtime to compile-time,

thus minimizes the runtime overhead,
: Runti
A also enables opportunities for extensive graph optimizations.
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3. Tiny Training Engine (TTE)

B updated O fixed

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update
fn (%x: Tensor[ (10, 10), float32], Example from a matrix
*weight: Tensor[ (10, 10), float32], multiplication with full update

$bias: Tensor[(10), float32]),
3grad: Tensor[(10), float32]),

# forward

Forward
y =mul(x,w)+b

Backward = multiply(%grad, %weight);
dy/dx = mul(G,w)
transpose(%grad) ;
dyldw = mul(G', X) multiply (%4, %x);
dy/db = sum(G) sum(%grad, axis=-1);

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 56


https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

iil ibIH .| | | ||

(a) full update (b) bias-on (c) sparse layer update (d) sparse tensor update

fn (%x: Tensor[ (10, 10), float32, needs grad=True],
Swelght: Tensor[ (10, 10), float32, needs grad=False],
$bias: Tensor[(10), float32, needs grad=True],

sgrad: Tensor[ (10 float32
J L(10) - 1) Annotate whether a tensor

requires gradient or not
# forward

Forward $0 = multiply(%x, %weight);
y = mul(x,w) + b 31 = add (%0, %bias);
# backward
Backward $3 = multiply(%$grad, %weight); ====> dy / dx

dy/dx = mul(G,w)

%4 = transpose(zgrad);
cbﬂdWH:lnuKCﬂ:X) $5 = multiply (%4, %X); ====> dy / dw
dy/db = sum(G) %6 = sum(%grad, axis=-1); ====> dy / db
(33, %5, %6)
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| 3. Tiny Training Engine (TTE)

iil ibIH .| | | ||

(a) full update (b) bias-on (c) sparse layer update (d) sparse tensor update

fn (%x: Tensor[ (10, 10), float32, needs grad=True],
Swelght: Tensor[ (10, 10), float32, needs grad=False],
$bias: Tensor[(10), float32, needs grad=True],
%grad: Tensor[(10), float32]),

{

# forward

$0 = multiply(%x, %Swelght);

%1 = add (%0, %bias);

# backward

$3 = multiply(%grad, %weight); ====> dy / dx
Remove unnecessary computations To——transpese{grae)t
from DAG via dependency analysis 55— ' %% ====> dy / dw

and dead-code elimination. %6 = sum(%grad, axis=-1); ====> dy / db

(%3, %5, %6)
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| 3. Tiny Training Engine (TTE)

i il ibIH | | ||

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

fn (%x: Tensor[ (10, 10), float32, needs grad=False],
Swelghtl: Tensor[ (10, 10), needs grad=False],
$biasl: Tensor[(10), needs grad=False],
Sweight2: Tensor[ (10, 10), needs grad=True],
$bias2: Tensor[(10), needs grad=True],

%grad: .., float32]),

Freely annotate ANY parameters
TTE will trim the computation accordingly.
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3. Tiny Training Engine (TTE)

i il ibIH | .|

B updated [ fixed

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update
fn (%x: Tensor[ (10, 10), float32], fn (%x: Tensor[ (10, 10), float32, needs grad=True],
$weight: Tensor[ (10, 10), float32], $weight: Tensor[ (20, 10), float32, ,
$bias: Tensor[(10), float32]), tbias: Tensor[(20), float32, needs grad=True],
%grad: Tensor[(10), float32]), %grad: Tensor[ (10, 20), float32]),
{ —_—>
# forward Automatically remove # forward
20 = multiply(%x, sweight); thebuffersofpruned g0 = muitiply($x, Sweight);
$1 = add (%0, %$bias); gﬂadkﬁﬂSfKﬁnthe 0.1 = slice(%x, begin=[0, 0], ends=[10, 10]);

# backward computation graph. 1 = add(%0, %bias);

= multiply(%grad, %$weight); # backward

o

o©°
w

o\©°
1N
o\©
W

= transpose(%grad) = multiply(%grad, %weight);

o©
(8 |
o
1N

= multiply (%4, %x); = transpose(%grad)
= sum(%grad, axis=-1); = multiply (%4, %0.1);
(83, %5, %6) sum(%grad, axis=-1);

} (33, %5, %6)

o©°
o\
o
(8 |

o
(o)
Il
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| 3. Tiny Training Engine (TTE)

Sparse update results

. full update sparse update
4000 3 650
= 3000 | 2239 5 745 [
3 T 6.5x
£ smaller
s 2000 sr?{a?I)l(er
X 8.4x
o smaller
Q. 1000 v
v £ 560
335 326 }
J [

0

* Tiny Training Engine supports backward graph pruning and sparse update at IR-level.

* After graph pruning, un-used weights and sub-tensors are pruned from DAG => 6.5-8.7x memory
saving
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

* Tiny Training Engine supports backward graph pruning and sparse update at IR-level.
* After graph pruning, un-used weights and sub-tensors are pruned from DAG => 6.5-8.7x memory

saving
F5 |} B; Us
F2 B2 /]2
Fl Bl Ul

Fy By || Uy

(a) Conventional way to update parameters

F. Forward, B: Backward, U: Update
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

* Tiny Training Engine supports backward graph pruning and sparse update at IR-level.
* After graph pruning, un-used weights and sub-tensors are pruned from DAG => 6.5-8.7x memory

saving
F.| B; [«——Memory waste! —— U, F;| B; |Ujk Immediately released
I B, U, I B, Ul l/
F B, U, F B, U, Il
Iy by |Up I by | U
(a) Conventional way to update parameters (b) Operator re-ordering
Operator life-cycle analysis reveals the memory After re-ordering, the redundant memory
redundancy in the optimization step. usage is eliminated from training.

F. Forward, B: Backward, U: Update
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

. Inference Training (activation) [ Training (weights) B Training (gradients) [ Trainable weights
~ 384 . 384 f
@ Memory optimized via |
— 2881 Oneratore (i -Place gradientupdate 4 288
S :
E
21 192 192
g ¥
5 .
> . .
0 30 60 90 120 150 180 210 240 270 0 30 60 90 120 150 180 210 240 270
Life cycle (operator index) Life cycle (operator index)
(a) Vanilla backward graph (b) Optimized backward graph

Operator life-cycle analysis shows memory footprint
can be greatly reduced by operator re-ordering.
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| 3. Tiny Training Engine (TTE)

Smaller memory usage, faster training speed

I full update sparse update [ TF-Lite, full (projected, OOM)
B sparse update + reorder TF-Lite, sparse M TTE, sparse
— 4000 3650 15000 13302
N —>
2 3000 | g 12000 |
~ 21x = 25%
QE) 2000 ) smaller c>)~. 9000 24x faster
S 1 = 6000 faster 5607
3 2ag ST 111
S 1000 5 3000 |
F- 373
0 | 0
MbV2 Proxyless = MCUNet MbV2 Proxyless MCUNet
(a) Peak memory vs. models (c) Traimning latency vs. models
20x smaller memory 23x faster speed
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| Tiny Training
Co-design Results

5256KB constraint

: 652 MB
TensorFlow (C|OUd)—
: 303 MB
PyTorch (Cloud)—
: 41.5 MB
MNN (edge)—
: 5.7 MB
Tiny Training Engine | « 7.3x
L | E 2. 9MB
+ Quantization-aware scaling I < 1 2.0x
355 KB
+ Sparse layer/tensor update E———— <« 8.8x
141 KB |
+ Operator reordering l «———— 2.4x
< 2300x
0.1 MB 1 MB 10 MB 100 MB

Co-design reduces the training memory by 2300x times with the same transfer accuracy.

The numbers are measured with MobilenetV2-w0.35, batch size 1 and resolution 128x128.
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| Extending TTE to More Platforms

Accelerate on-device training on diverse edge hardware

* We extend TTE to support:
* Diverse models (CNN + Transformers)
* Diverse frontends
* PyTorch
* TensorFlow
e Jax
* Diverse hardware backends
* Apple M1
* Raspberry Pi
 Smartphones

System-Algorithm Co-Design for TinyML
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| Extending TTE to More Platforms

Consistently speed up training on diverse platforms

 TTE provides a systematic support for sparse update schemes for vision and NLP models, leading
to consistent memory saving at the same training accuracy

TensorFlow PyTorch JAX [EMNN [TTE (full-bp) [ TTE (sparse-bp)

. 'Q
L w»n

data/sec
(\®)

% Results measured on Raspberry Pi 4B+.
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| Media

MIT News MIT News MIT News

0 SUBSCRIBE v SEARCH NEWS
ON CAMPUS AND AROUND THE WORLD E< SUBSCRIBE v SEARCH NEWS ON'CAMEUS AND AROUND THE WORLD = S R T ST S TR £< SUBSCRIBE v SEARCH NEWS

S SR Dl Lk b el et LS Learning on the edge
internet of thlngs devices . i i y A new technique enables Al models to continually learn

Advance could enable artificial intelligence on usage on lnternet-of-thlngs devices from new data on intelligent edge devices like

household appliances while enhancing data security New technique applied to small computer chips smartphones and sensors, reducing energy costs and

and energy efficiency. enables efficient vision and detection algorithms privacy risks.
without internet connectivity. .

(5) Watch Video Adam Zewe | MIT News Office  PRESS INQUIRIES
(B) Watch Video October 4, 2022

Daniel Ackerman | MIT News Office
November 13, 2020

g

7’

v PRESS INQUIRIES

Lauren Hinkel | MIT-IBM Watson Al Lab
December 8, 2021

v PRESS INQUIRIES . .
A machine-learning model on an

intelligent edge device allows it to adapt
to new data and make better predictions.
For instance, training a model on a smart
keyboard could enable the keyboard to
continually learn from the user’s writing.

MIT researchers have developed a
system, called MCUNet, that brings
machine learning to microcontrollers.
The advance could enhance the
function and security of devices
connected to the Internet of Things

An MIT team's tinyML vision system

outperforms other models in many
image classification and detection

tasks. Image: Digital collage by Jose-Luis Olivares,

5“»
B

Photo courtesy of the researchers. MIT, using stock images and images derived
(loT). from MidJourney Al
L
z
‘ 9 ..
g .
| T— R ———————C | —— S

(Homepage highlight) (Homepage highlight)

MCUNet: Tiny Deep Learning on loT Devices [Lin et al., NeurlPS 2020]
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurlPS 2021]
On-Device Training Under 256KB Memory [Lin et al., NeurlPS 2022]
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| Future Work

 Scale up to LLM/foundation models

 LLM models are hard to serve/fine-tune due to the huge model size
 GPU memories are not enough to serve 100 billion-parameter models

* Qur technigues help democratize LLMs (e.g., quantization, sparse update, system support)
* Collaboration welcome!

Algorithm

scale down

scale up

TinyML LLM

System
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