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Today’s AI is too BIG
Better model always comes with higher computational cost (vision)
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Today’s AI is too BIG
Better model always comes with higher computational cost (NLP)
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Deep Learning Going “Tiny”
Cloud → Mobile → Tiny

4

data

prediction

• Data uploaded to the cloud for inference/training
Cloud AI

GPUs/TPUs

ResNet
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Deep Learning Going “Tiny”
Cloud → Mobile → Tiny

5

Cloud AI Mobile AI Tiny AI

GPUs/TPUs

ResNet

Smartphones

MobileNet

IoT/Microcontrollers

MCUNet
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Deep Learning Going “Tiny”
Squeezing deep learning into IoT devices
• Billions of IoT devices around the world based on microcontrollers

• Low-cost: low-income people can afford access. Democratize AI.

• Low-power: green AI, reduce carbon
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Deep Learning Going “Tiny”
Squeezing deep learning into IoT devices
• Billions of IoT devices around the world based on microcontrollers

• Low-cost: low-income people can afford access. Democratize AI.

• Low-power: green AI, reduce carbon

• Various applications

7

Personalized Healthcare

…

Smart Manufacturing Precise AgricultureSmart Home

https://tinytraining.mit.edu
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TinyML is Challenging
Memory size is too small to hold DNNs
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Cloud AI Mobile AI Tiny AI

Memory (Activation)

Storage (Weights)

32GB 4GB

256GB

320kB

1MB~TB/PB
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TinyML is Challenging
Memory size is too small to hold DNNs

9

Cloud AI Mobile AI Tiny AI

Memory (Activation)

Storage (Weights) ~TB/PB

4GB

256GB

320kB

1MB13,000x 
smaller

100,000x 
smaller

32GB

https://tinytraining.mit.edu


On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Overview

10

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]


On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022] 

MCUNetV1

Tiny Image Recognition

MCUNetV2

Higher Resolution for Object 

detection, etc.

MCUNetV3

Tiny On-Device Training
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MCUNetV1 - Classification
Tiny vision application: visual wake words

11
Visual wake words dataset. [Chowdhery et al., arXiv 2019]
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MCUNetV2: Detection
Advancing object detection by allowing a larger resolution

12

Face/mask detection Person detection

https://mcunet.mit.edu
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Overview

13

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]


On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022] 

MCUNetV1

Tiny Image Recognition

MCUNetV2

Higher Resolution for Object 

detection, etc.

MCUNetV3

Tiny On-Device Training Training

Inference
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Overview

14

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]


On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022] 

MCUNetV1

Tiny Image Recognition

MCUNetV2

Higher Resolution for Object 

detection, etc.

MCUNetV3

Tiny On-Device Training

System Algorithm

Co-design
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Tiny On-Device Training

15

- Sparse Update 
- Tiny Training Engine (TTE)

On-Device Training Under 256KB SRAM [Lin et al., NeurIPS 2022]

https://mcunet.mit.edu/
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Can We Learn on the Edge?

●On-device learning: 

●customization by adapting to user data / life-long learning

●better privacy, lower cost, empower AIoT with limited connectivity

16

User Intelligent Edge Devices

New and Sensitive

Data

…

Cloud Server

On-device Learning

Cloud-based Learning

data cannot be sent to the  
cloud for privacy reason

From tinyML inference to training
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Can We Learn on the Edge?

●On-device learning: 

●customization by adapting to user data / life-long learning

●better privacy, lower cost, empower AIoT with limited connectivity

17

From tinyML inference to training

A virtuous cycle:

●Training is more expensive than inference

●For example, store intermediate activation, extra back-propagation, etc.

https://tinytraining.mit.edu
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Training Memory is the Key Bottleneck

18
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• Edge devices have tight memory constraints. The training memory footprint of neural networks 
can easily exceed the limit. 

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]
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On-Device Training Under 256KB Memory

19

• Training is more expensive than inference due to back-propagation, making it hard to fit IoT 
devices (e.g., MCU only has 256KB SRAM).

+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

0.1 MB 1 MB 10 MB 100 MB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x

2300x
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On-Device Training Under 256KB Memory

20

• Training is more expensive than inference due to back-propagation, making it hard to fit IoT 
devices (e.g., MCU only has 256KB SRAM).

+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

0.1 MB 1 MB 10 MB 100 MB

5.7 MB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x

2300x
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On-Device Training Under 256KB Memory

21

1. Quantization-aware 
scaling

2. Sparse layer/tensor 
update

3. Tiny Training 
Engine

https://tinytraining.mit.edu
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On-Device Training Under 256KB Memory

22

1. Quantization-aware 
scaling

2. Sparse layer/tensor 
update

3. Tiny Training 
Engine
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1. Quantization-Aware Scaling (QAS)
Real quantized graphs save memory, but are hard to quantize

23

(a) Fake Quantization  
(quantization aware training)

Most intermediate tensors are still in FP32 format in fake quantization, 

thus cannot save memory footprint

https://tinytraining.mit.edu
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✓

1. Quantization-Aware Scaling (QAS)
Real quantized graphs save memory, but are hard to quantize

24

(b) Real Quantization  
(inference/on-device training)

(a) Fake Quantization  
(quantization aware training)

All tensors are in int8/int32 format for real quantization, 

thus save memory footprint, but leading to optimization difficulty

https://tinytraining.mit.edu
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1. Quantization-Aware Scaling (QAS)
Quantized graphs save memory, but are hard to quantize

25

Difficult optimize:

• Mixed precisions: int8/int32/fp32…

• Lack BatchNorm
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1. Quantization-Aware Scaling (QAS)
Quantization leads to distorted gradient magnitudes

26

- Why is the training convergence worse?  
- The scale of weight and gradients does not match in real 
quantized training!
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Quantization overview

Per Channel scaling 

Weight and gradient ratios are off  by S−2
W

Thus, re-scale the gradients

1. Quantization-Aware Scaling (QAS)
QAS addresses the optimization difficulty of quantized graphs

27
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QAS aligns the W/G 
ratio with fp32

1. Quantization-Aware Scaling (QAS)
QAS addresses the optimization difficulty of quantized graphs

28
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1. Quantization-Aware Scaling (QAS)
QAS addresses the optimization difficulty of quantized graphs

29

Without QAS, poor convergence

With QAS, better convergence

After applying QAS, the convergence of real quantized is stable.

https://tinytraining.mit.edu
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1. Quantization-Aware Scaling (QAS)
QAS addresses the optimization difficulty of quantized graphs

30

Improve accuracy

QAS improves the accuracy over naive int8 training, and shows 
no inferior performance than fp32 results.

https://tinytraining.mit.edu
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On-Device Training Under 256KB Memory

31

1. Quantization-aware 
scaling

2. Sparse layer/tensor 
update

3. Tiny Training 
Engine
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Training Memory is the Key Bottleneck

32

ai+1 = aiWi + bi

∂L
∂Wi

= aT
i

∂L
∂ai+1

Forward: 

Backward: 

Answer: Because of intermediate activations

• Inference does not need to store activations, training does.


• Activations grows linearly with batch size, which is always 1 for inference.


• Even with bs=1, activations are usually larger than model weights.

Question: Why training memory is much larger than inference?

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

https://tinytraining.mit.edu
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Training Memory is the Key Bottleneck

33

• Activation is the main bottleneck for on-device learning, not parameters. 
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Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

6.9x larger

Activation is the 
main bottleneck, 
not parameters.

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]
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Training Memory is the Key Bottleneck

34

• Activation is the main bottleneck for on-device learning, not parameters.

• Previous methods focus on reducing the number of parameters or 

FLOPs, while the main bottleneck does not improve much. 
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Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

The main bottleneck does 
not improve much.

6.9x larger

Activation is the 
main bottleneck, 
not parameters.

4.3x

1.1x

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]
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2. Sparse Layer/Tensor Update
Full update

35

Updating the whole model is too expensive:

• Need to save all intermediate activation (quite large)

• Need to store the updated weights in SRAM (Flash is read-only)
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Model: ProxylessNAS-Mobile

Far beyond the on-device 
learning capacity
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2. Sparse Layer/Tensor Update
Last layer update

36
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Updating only the last cheap

• No need to back propagating to previous layers

• But the accuracy is low and not ideal.

Model: ProxylessNAS-Mobile

weights
biases

Significant 
accuracy

 degradation!

0

80

160

240

320

400
Full Last Bias+Last

Memory Cost (MB)
50

61

72

83

94

Cars Top1 (%)

12x 
smaller

https://tinytraining.mit.edu


On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Bias-only update

37

Updating the only the bias part

• No need to store the activations

• Back propagating to the first layer.
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2. Sparse Layer/Tensor Update
Updated synapses are sparse

38
Peter Huttenlocher (1931–2013) [Walsh, C. A., Nature 2013]

[2]

Data Source: 1, 2Do We Have Brain to Spare? [Drachman DA, Neurology 2004]
Slide Inspiration: Alila Medical Media

Time
Newborn 2-4 years old AdultAdolescence

2500 synapses 
per neuron

15000 synapses 
per neuron

7000 synapses 
per neuron

[1]

[1]

K-12 education

Synapses are getting "sparse"

https://tinytraining.mit.edu
https://n.neurology.org/content/64/12/2004
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
https://n.neurology.org/content/64/12/2004
https://www.youtube.com/watch?v=0S0jKbh6R1I
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
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2. Sparse Layer/Tensor Update
Some layers are more important than others

39
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2. Sparse Layer/Tensor Update
Some layers are more important than others

40
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1. Later layers contribute more to the accuracy.
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2. Sparse Layer/Tensor Update
Some layers are more important than others

41
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update 1/2 channels
update 1/4 channels
update 1/8 channels

layer index to update weight
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1. Later layers contribute more to the accuracy.

2. First point-wise conv are more important to accuracy.

First point-wise conv

https://tinytraining.mit.edu
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2. Sparse Layer/Tensor Update
Some layers are more important than others

42
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1. Later layers contribute more to the accuracy.

2. First point-wise conv are more important to accuracy.

3. The more channels being updated, the higher the accuracy.

https://tinytraining.mit.edu
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2. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update

43
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Model: ProxylessNAS-Mobile

https://tinytraining.mit.edu


On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update

44
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Sparse layer backpropagation
Model: ProxylessNAS-Mobile

• Sparse layer update: no need to store activation

https://tinytraining.mit.edu
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2. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update
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Sparse layer backpropagation

Sparse tensor backpropagation

Model: ProxylessNAS-Mobile

Reduce by 4x
Activation to store: (N, M)

Weight in SRAM: (M, H)

G.T
X

(dW).T

=

(H, N) (N, M) (H, M)dy
dw

:

Activation to store: (N, 0.25*M)

Weight in SRAM: (0.25*M, H)

G.T
X

(dW).T

=

(H, N) (N, M) (H, M)

X
(dw).T

dy
dw

:

• Sparse layer update: no need to store activation

• Sparse tensor update: only store a subset of the activations.
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2. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update
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FC

Sparse layer backpropagation

Sparse tensor backpropagation

Backpropagation stops here
Model: ProxylessNAS-Mobile

• Sparse layer update: no need to store activation

• Sparse tensor update: only store a subset of the activations.

• Sparse update: no need to back propagate the early layers
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2. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update
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FC

Sparse layer backpropagation

Sparse tensor backpropagation

Backpropagation stops here
Model: ProxylessNAS-Mobile
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Update Paradigms Comparison
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(a) Full update

(b) Last-only update

(c) Bias-only update

(d) Sparse layer/Sparse tensor update
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On-Device Training Under 256KB Memory

49

1. Quantization-aware 
scaling

2. Sparse layer/tensor 
update

3. Tiny Training 
Engine
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3. Tiny Training Engine (TTE)
Existing frameworks cannot fit
• Runtime is heavy


• Heavy dependencies and large binary size (>100MB static memory)

• Auto-diff at runtime; low edge efficiency


• Memory is heavy

• A lot of intermediate (and unused) buffers

• Has to compute full gradients

50
+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x 2300x
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3. Tiny Training Engine (TTE)
Workflow of conventional training engine

51

Data Weight

MatMul

Out

1. Computation Graph 
(forward)
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3. Tiny Training Engine (TTE)
Workflow of conventional training engine

52

f(x) → f′￼(x)

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

1. Computation Graph 
(forward)

2. AutoDiff

3. Computation Graph 
(backward)
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3. Tiny Training Engine (TTE)
Workflow of conventional training engine

53

f(x) → f′￼(x)

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

4. Execution 

Engine

1. Computation Graph 
(forward)

2. AutoDiff

3. Computation Graph 
(backward)
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3. Tiny Training Engine (TTE)
Workflow of conventional training engine

54

1. Computation Graph 
(forward)

2. AutoDiff

f(x) → f′￼(x)

3. Computation Graph 
(backward)

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

4. Execution 

Engine

Conventional training framework focus on flexibility, 

and the auto-diff is performed at runtime.


Thus, any optimizations will lead to runtime overhead.: Runtime

: Compile-Time
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3. Tiny Training Engine (TTE)
TTE: Move workload from runtime to compile time

55

TTE moves most workload from runtime to compile-time,

thus minimizes the runtime overhead,


also enables opportunities for extensive graph optimizations.
: Runtime

: Compile-Time

1. Computation Graph 
(forward)

2. AutoDiff

f(x) → f′￼(x)

3. Computation Graph 
(backward)

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

4. Execution 

Engine
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3. Tiny Training Engine (TTE)

56

fn (%x: Tensor[(10, 10), float32], 
    %weight: Tensor[(10, 10), float32], 
    %bias: Tensor[(10), float32]),
    %grad: Tensor[(10), float32]),
{
  # forward
  %0 = multiply(%x, %weight);
  %1 = add(%0, %bias);
  # backward
  %3 = multiply(%grad, %weight);
  %4 = transpose(%grad);
  %5 = multiply(%4, %x);
  %6 = sum(%grad, axis=-1);
  (%3, %5, %6)
}

====> dy / dx

====> dy / dw
====> dy / db

Example from a matrix 
multiplication with full update

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

y = mul(x, w) + b

dy/dx = mul(G, w)

dy/db = sum(G)
dy/dw = mul(GT, X)

Forward

Backward

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)

57

fn (%x: Tensor[(10, 10), float32, needs_grad=True], 
    %weight: Tensor[(10, 10), float32, needs_grad=False], 
    %bias: Tensor[(10), float32, needs_grad=True],
    %grad: Tensor[(10), float32]),
{
  # forward
  %0 = multiply(%x, %weight);
  %1 = add(%0, %bias);
  # backward
  %3 = multiply(%grad, %weight);
  %4 = transpose(%grad);
  %5 = multiply(%4, %x);
  %6 = sum(%grad, axis=-1);
  (%3, %5, %6)
}

Annotate whether a tensor  
requires gradient or not

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

====> dy / dx

====> dy / dw
====> dy / db

y = mul(x, w) + b

dy/dx = mul(G, w)

dy/db = sum(G)
dy/dw = mul(GT, X)

Forward

Backward

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)

58

fn (%x: Tensor[(10, 10), float32, needs_grad=True], 
    %weight: Tensor[(10, 10), float32, needs_grad=False], 
    %bias: Tensor[(10), float32, needs_grad=True],
    %grad: Tensor[(10), float32]),
{
  # forward
  %0 = multiply(%x, %weight);
  %1 = add(%0, %bias);
  # backward
  %3 = multiply(%grad, %weight);
  %4 = transpose(%grad);
  %5 = multiply(%4, %x);
  %6 = sum(%grad, axis=-1);
  (%3, %5, %6)
}

Remove unnecessary computations 
from DAG via dependency analysis 

and dead-code elimination.

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

====> dy / dx

====> dy / dw
====> dy / db

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)

59

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

Freely annotate ANY parameters 

TTE will trim the computation accordingly.

fn (%x: Tensor[(10, 10), float32, needs_grad=False], 
    %weight1: Tensor[(10, 10), needs_grad=False], 
    %bias1: Tensor[(10), needs_grad=False],
    %weight2: Tensor[(10, 10), needs_grad=True],
    %bias2: Tensor[(10), needs_grad=True],
    …………
    %grad: .., float32]),
{
  # …
}

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)

60

Automatically remove 
the buffers of pruned 

gradients from the 
computation graph.

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

fn (%x: Tensor[(10, 10), float32], 
    %weight: Tensor[(10, 10), float32], 
    %bias: Tensor[(10), float32]),
    %grad: Tensor[(10), float32]),
{
  # forward
  %0 = multiply(%x, %weight);
  %1 = add(%0, %bias);
  # backward
  %3 = multiply(%grad, %weight);
  %4 = transpose(%grad)
  %5 = multiply(%4, %x);
  %6 = sum(%grad, axis=-1);
  (%3, %5, %6)
}

fn (%x: Tensor[(10, 10), float32, needs_grad=True], 
    %weight: Tensor[(20, 10), float32, needs_grad=0.5], 
    %bias: Tensor[(20), float32, needs_grad=True],
    %grad: Tensor[(10, 20), float32]),
{
  # forward
  %0 = multiply(%x, %weight);
  %0.1 = slice(%x, begin=[0, 0], ends=[10, 10]);
  %1 = add(%0, %bias);
  # backward
  %3 = multiply(%grad, %weight);
  %4 = transpose(%grad)
  %5 = multiply(%4, %0.1);
  %6 = sum(%grad, axis=-1);
  (%3, %5, %6)
}

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)

• Tiny Training Engine supports backward graph pruning and sparse update at IR-level.

• After graph pruning, un-used weights and sub-tensors are pruned from DAG => 6.5-8.7x memory 

saving

61

sparse update

Pe
ak

 M
em

 (K
B

)↓

0

1000

2000

3000

4000

560
326335

3,650

2,745
2,939

8.7x  
smaller

full update

6.5x  
smaller

8.4x  
smaller

Sparse update results
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3. Tiny Training Engine (TTE)
• Tiny Training Engine supports backward graph pruning and sparse update at IR-level.

• After graph pruning, un-used weights and sub-tensors are pruned from DAG => 6.5-8.7x memory 

saving

62

(a) Conventional way to update parameters

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3

F: Forward, B: Backward, U: Update

Re-ordering reduces memory footprint
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3. Tiny Training Engine (TTE)
• Tiny Training Engine supports backward graph pruning and sparse update at IR-level.

• After graph pruning, un-used weights and sub-tensors are pruned from DAG => 6.5-8.7x memory 

saving

63

Operator life-cycle analysis reveals the memory 
redundancy in the optimization step.

(a) Conventional way to update parameters (b) Operator re-ordering

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3Memory waste!

F0

F1

F2

F3

B0

B1

B3

U0

U1

U3

B2

Immediately released
U2

After re-ordering, the redundant memory 
usage is eliminated from training.

F: Forward, B: Backward, U: Update

Re-ordering reduces memory footprint
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3. Tiny Training Engine (TTE)
Re-ordering reduces memory footprint

64

Operator life-cycle analysis shows memory footprint 
can be greatly reduced by operator re-ordering.
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3. Tiny Training Engine (TTE)
Smaller memory usage, faster training speed

65

20x smaller memory 23x faster speed
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Tiny Training
Co-design Results

66

+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

0.1 MB 1 MB 10 MB 100 MB

5.7 MB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x

2300x

Co-design reduces the training memory by 2300x times with the same transfer accuracy. 


The numbers are measured with MobilenetV2-w0.35, batch size 1 and resolution 128x128.
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https://www.bilibili.com/video/BV1qv4y1d7MV/ https://youtu.be/XaDCO8YtmBw

https://tinytraining.mit.edu
https://www.bilibili.com/video/BV1qv4y1d7MV/
https://youtu.be/XaDCO8YtmBw
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Extending TTE to More Platforms

68

• We extend TTE to support:

• Diverse models (CNN + Transformers)

• Diverse frontends

• PyTorch

• TensorFlow

• Jax


• Diverse hardware backends

• Apple M1

• Raspberry Pi

• Smartphones

• …

Accelerate on-device training on diverse edge hardware

68
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Extending TTE to More Platforms

69

Consistently speed up training on diverse platforms

• TTE provides a systematic support for sparse update schemes for vision and NLP models, leading 
to consistent memory saving at the same training accuracy

Results measured on Raspberry Pi 4B+.

69
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Media

70

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]


On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022] 

(Homepage highlight) (Homepage highlight)
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Open Source

Sign up here to get updates!

https://forms.gle/UW1uUmnfk1k6UJPPA

https://mcunet.mit.edu/
https://forms.gle/UW1uUmnfk1k6UJPPA
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Future Work
• Scale up to LLM/foundation models 

• LLM models are hard to serve/fine-tune due to the huge model size 

• GPU memories are not enough to serve 100 billion-parameter models

• Our techniques help democratize LLMs (e.g., quantization, sparse update, system support)


• Collaboration welcome!

72

TinyML LLM
scale down scale up

Algorithm

System

https://mcunet.mit.edu/

