
Proxy-less Architecture Search via Binarized Path Learning

Han Cai, Ligeng Zhu, Song Han Massachusetts Institute of Technology

Project Overview

(1) Previous proxy-based approach

NAS needs to utilize **proxy** tasks due to its high cost:

• CIFAR-10 -> ImageNet

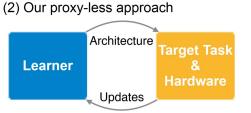
cumbersome network

- Small arch space -> large arch space
- Fewer epochs training -> full training

Limitations

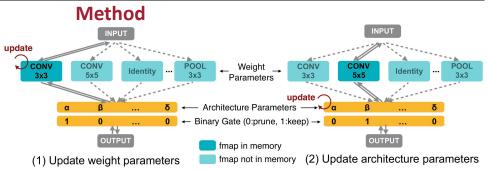
• Suboptimal for the target task

GPU hour-wise: Simplify NAS to


be a single training process of a

1. Build the cumbersome network

2. Use architecture parameters to


with all candidate paths

Blocks are forced to share the same structure

Goal: Directly learn architectures on the large-scale target task while allowing all blocks to have different structures

We achieve this by reducing the cost of NAS (GPU hours and GPU memory) to the **same level of normal training**.

identify and prune redundant paths (path-level pruning) GPU memory-wise: Binarize architecture parameters and allow only one path of activation to be active in

memory at run-time. Learn binarized architecture parameters via

- 1. Modified gradient decent based on BinaryConnect
- 2. REINFORCE-based algorithm for non-differentiable objectives (e.g. latency, energy and memory)

Proxyless NAS results on CIFAR-10			Proxyless NAS results on ImageNet					
Model	Params	Test error	Model			Top-1	Top-5	GPU latency
DenseNet-BC (Huang et al., 2017)	25.6M	3.46	MobileNet	MobileNetV2 (Sandler et al., 2018) ShuffleNetV2 (1.5) (Ma et al., 2018)			91.0	6.1ms
PyramidNet (Han et al., 2017) Shales Shales is a (a. (Da Vrian & Taulan 2017)	26.0M	3.31	ShuffleNet				-	7.3ms
Shake-Shake + c/o (DeVries & Taylor, 2017) PyramidNet + SD (Yamada et al., 2018)	26.2M 26.0M	2.56 2.31	ResNet-34 (He et al., 2016)			72.6 73.3	91.4	8.0ms
$\frac{1}{\text{ENAS} + \text{c/o} (\text{Pham et al., 2018})}$	4.6M	2.89		NASNet-A Zoph et al. (2018)			91.3	38.3ms
DARTS + c/o (Liu et al., 2018c)	3.4M	2.83	MnasNet (Tan et al., 2018) Proxyless (ours)			74.0	91.8	6.1ms
NASNet-A + c/o (Zoph et al., 2018)	27.6M	2.40				74.5	92.1	5.1ms
PathLevel EAS + c/o (Cai et al., 2018b) AmoebaNet-B + c/o (Real et al., 2018)	14.3M 34.9M	2.30 2.13			10.0 00.00000			
$\frac{1}{Proxyless-R + c/o (ours)}$	5.8M	2.13		Method	GPU hours	GPU	memor	у
Proxyless- $G + c/o$ (ours)	5.7M	2.08		NASNet	10^{4}		10^{1}	
• Directly explore a huge space: 54 distinct blocks			DARTS	10^2		10^{2}		
and $7^{54 \times 12} \approx 10^{547}$ possible architectures				Mnas	10^{4}		10^{1}	
• State-of-the-art test error with 6X fewer params				Ours	10^2		10^{1}	

(a) Efficient CPU model found by Proxyless NAS (deep and thin, only 3x3 and 5x5, late pooling).

(b) Efficient GPU model found by Proxyless NAS (shallow and wide, many 7x7, early pooling).

Specialize Network Architectures for Different Platforms

Model	Top-1 (%)	GPU	CPU
Proxyless on GPU	74.5	5.1ms	204.0ms
Proxyless on CPU	74.6	7.4ms	134.8ms

Hardware prefers specialized models. Proxyless NAS provides an efficient, automated way to design specialized models for different hardware.

Han Cai, <u>hancai@mit.edu</u> Ligeng Zhu, <u>ligeng@mit.edu</u> Song Han, <u>songhan@mit.edu</u>

#AI Research Week hosted by MIT-IBM Watson AI Lab