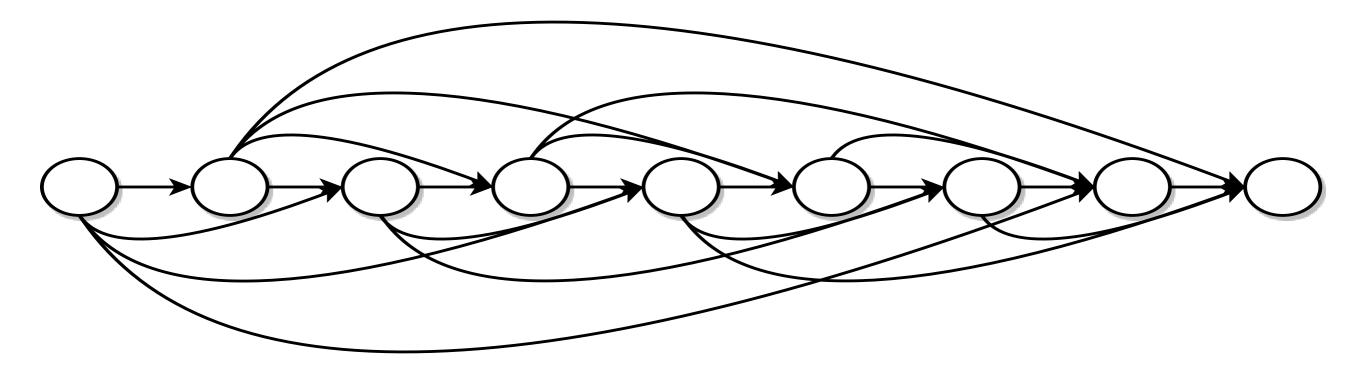
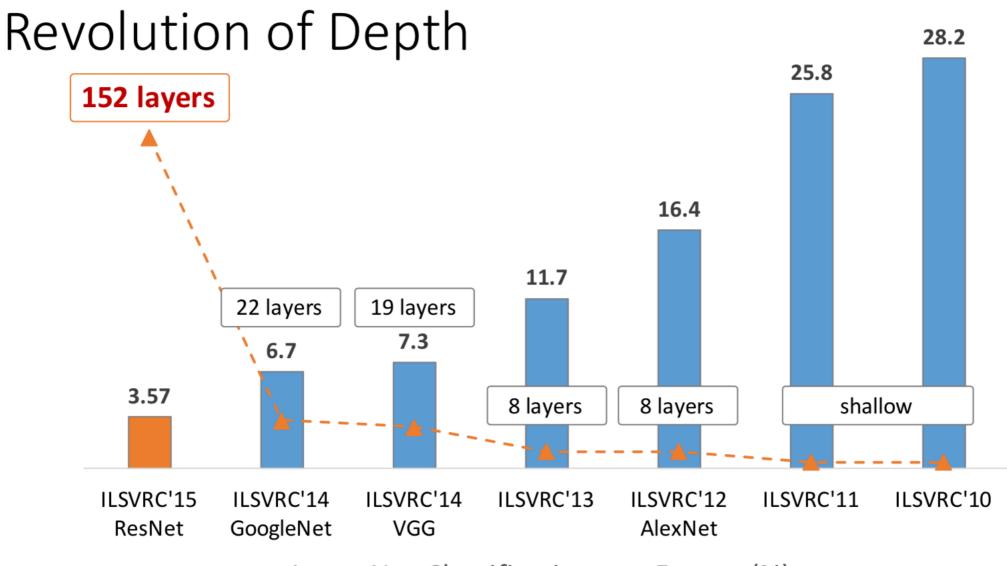
#### Sparsely Aggregated Convolutional Networks

Ligeng Zhu, Ruizhi Deng, Zhiwei Deng, Greg Mori, Ping Tan



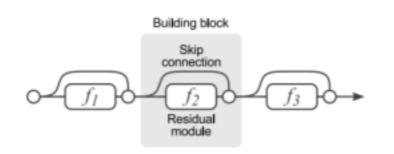
#### Power of Skip Connections



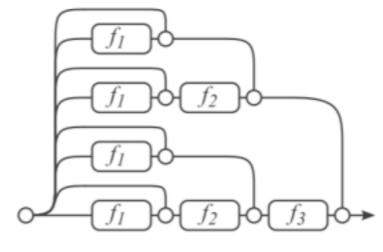
ImageNet Classification top-5 error (%)

# Residual Networks Behave Like Ensembles of Relatively Shallow Networks. (NIPS 2016)

- Skip connection matters!
  - ResNet = a collection of many paths



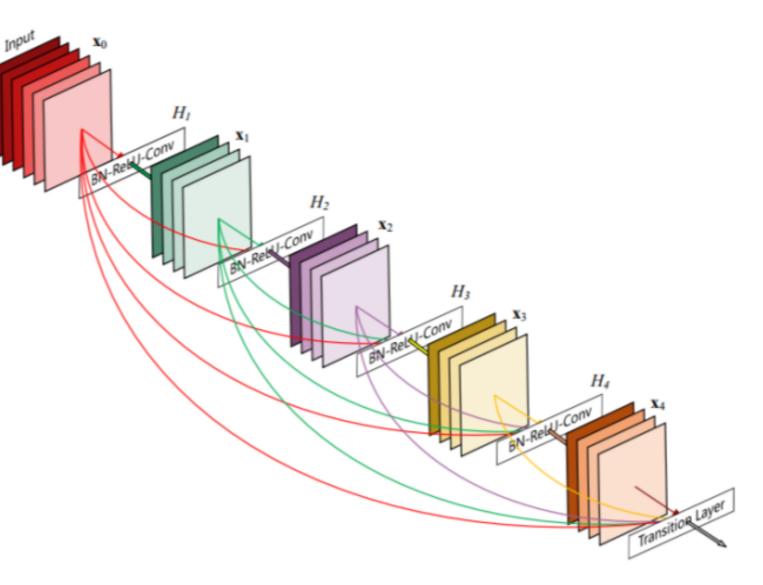
(a) Conventional 3-block residual network



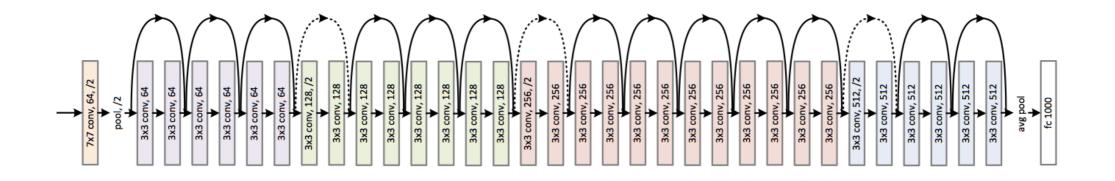
<sup>(</sup>b) Unraveled view of (a)

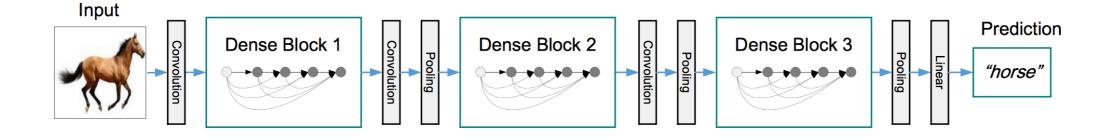
#### Why DenseNet Further Improves?

| Cifar-10       | param | error |
|----------------|-------|-------|
| Dense-40-12    | 1.0M  | 7.00  |
| Dense-100-12   | 7.0M  | 5.77  |
| Dense-100-24   | 27.2M | 5.83  |
| <b>Res-164</b> | 1.7M  | 11.26 |
| Res-1001       | 10.2M | 10.56 |



# Compare Dense & Res



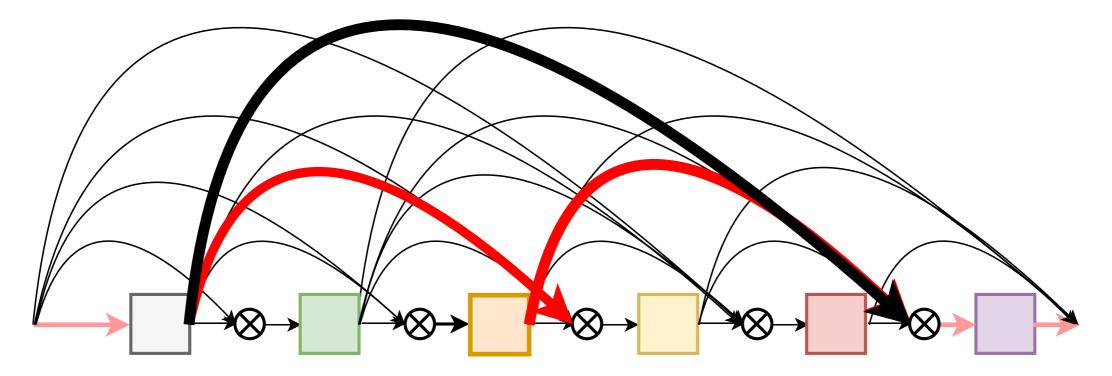


DenseNet has much more paths than ResNet. (Dense)

True ?

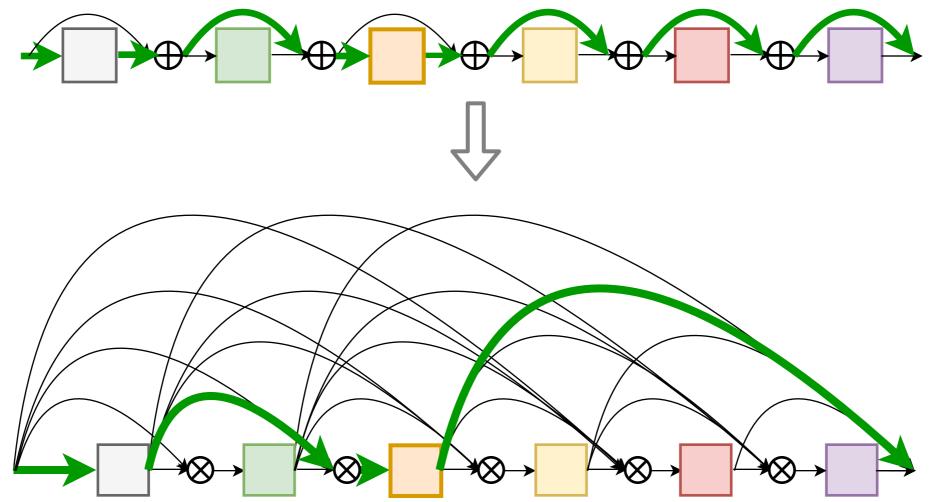
# Compare Dense & Res

- No, the number of paths in DenseNet and ResNet have similar patterns.
- Because no consecutive skip connections can be taken.

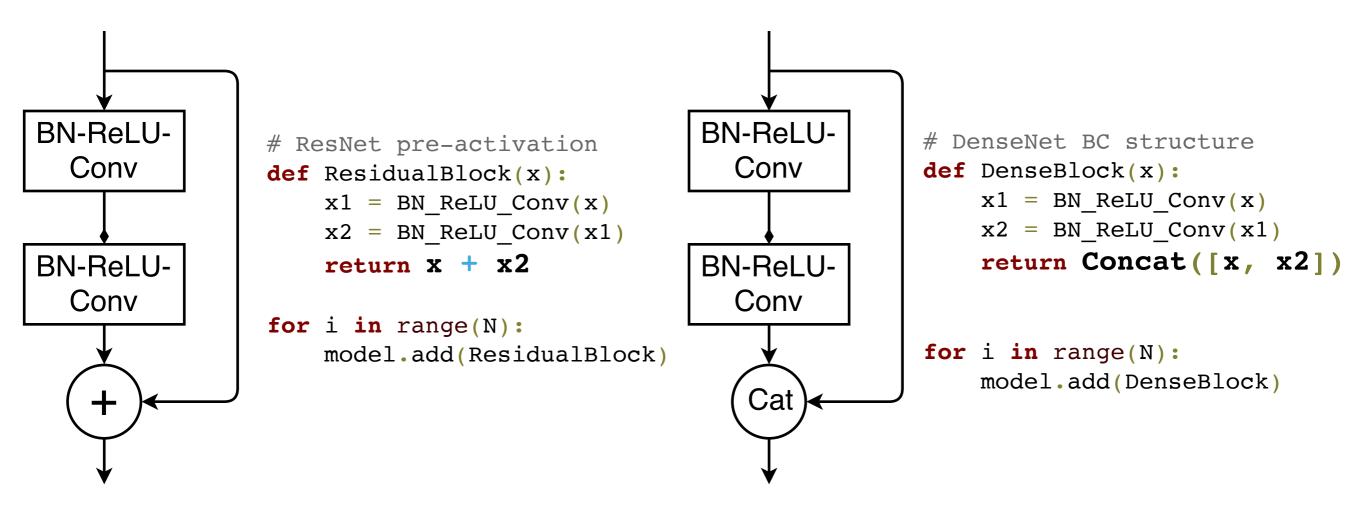


# Compare Dense & Res

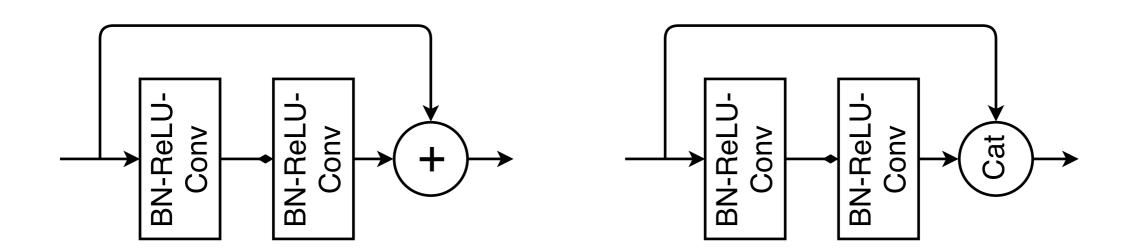
 There's a bijection between paths of DenseNet and paths of ResNet.



• So, what makes Dense better?

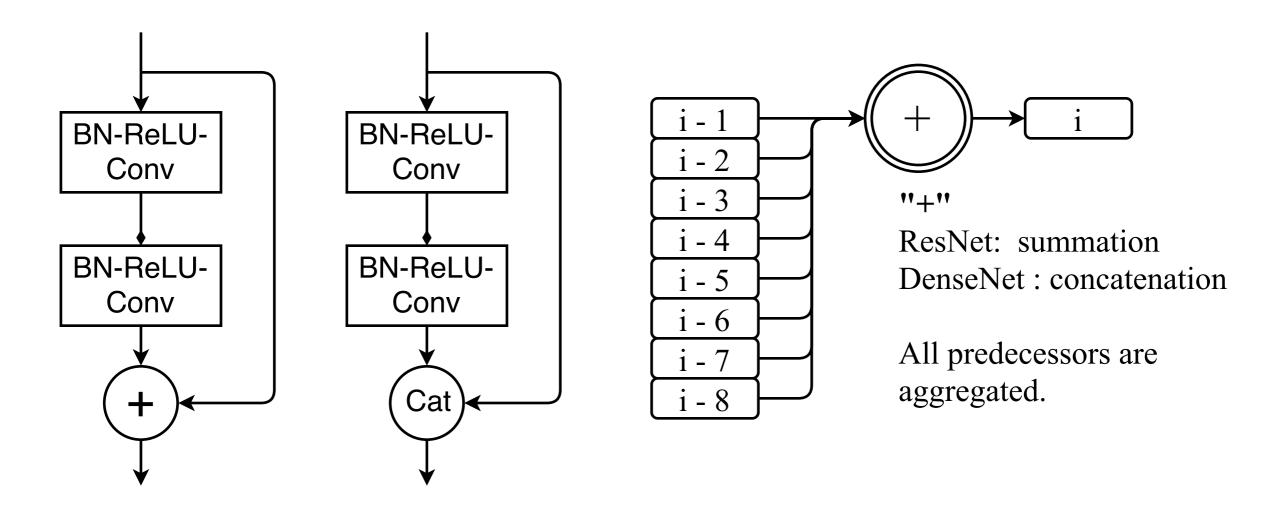


• Features are densely aggregated in both Res and Dense.

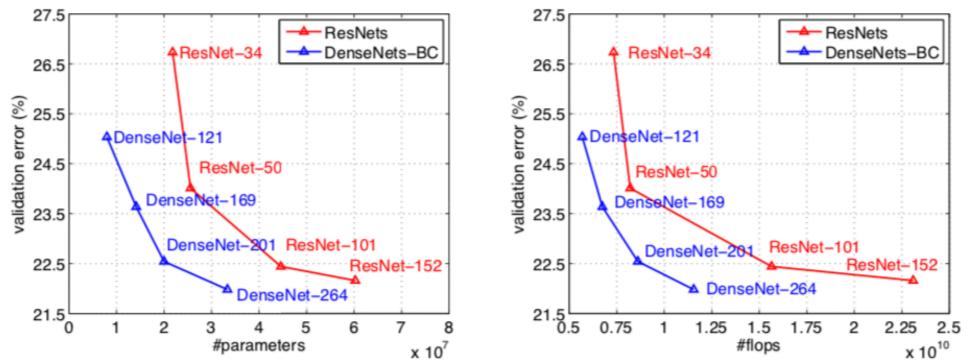


 $\begin{aligned} x_{\ell+1} &= F_{\ell}(x_{\ell}) + x_{\ell} & x_{\ell+1} = F_{\ell}(x_{\ell}) \oplus x_{\ell} \\ &= F_{\ell}(x_{\ell}) + F_{\ell-1}(x_{\ell-1}) + x_{\ell-1} & = F_{\ell}(x_{\ell}) \oplus F_{\ell-1}(x_{\ell-1}) \oplus x_{\ell-1} \\ &= F_{\ell}(x_{\ell}) + F_{\ell-1}(x_{\ell-1}) + \dots + F_{1}(x_{1}) & = F_{\ell}(x_{\ell}) \oplus F_{\ell-1}(x_{\ell-1}) \oplus \dots \oplus F_{1}(x_{1}) \\ &= y_{\ell-1} + y_{\ell-2} + \dots + y_{1}. & = y_{\ell-1} \oplus y_{\ell-2} \oplus \dots \oplus y_{1}. \end{aligned}$ 

• Features are densely aggregated in both Res and Dense.



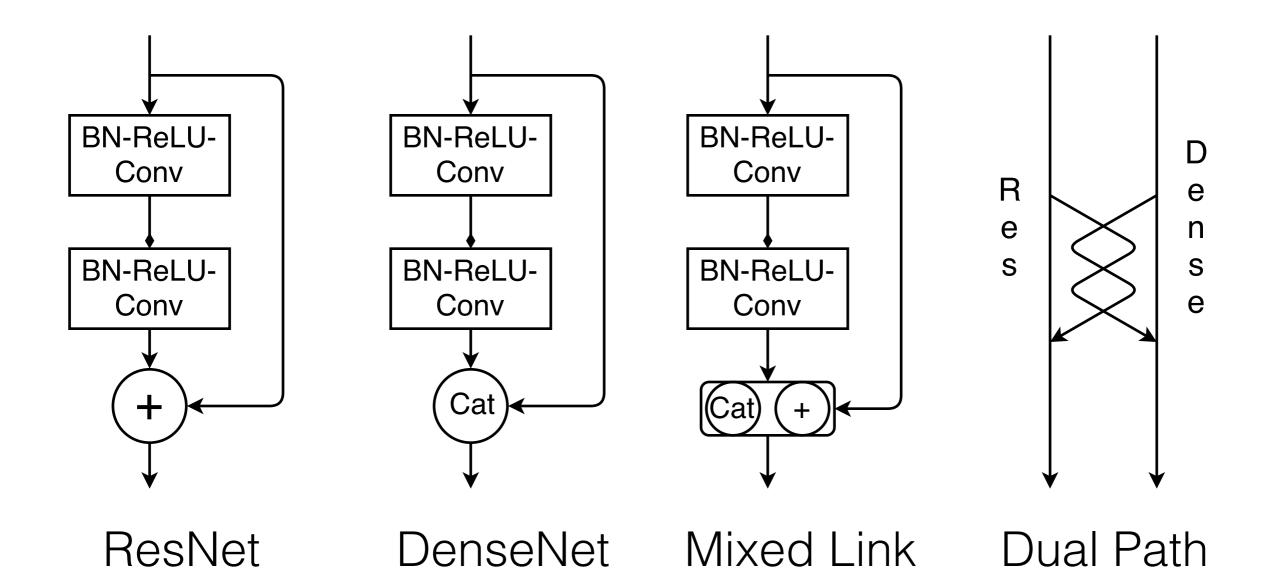
• Concatenation is a better way of aggregation.



**Figure 3:** Comparison of the DenseNets and ResNets top-1 error rates (single-crop testing) on the ImageNet validation dataset as a function of learned parameters (*left*) and FLOPs during test-time (*right*).

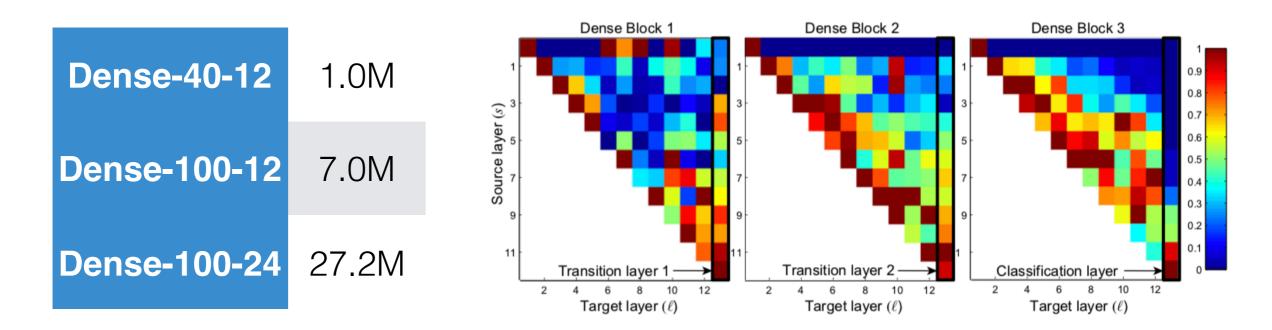
- ResNet > Plain:
  - Utilize more previous layers
- DenseNet > ResNet
  - Concatenation is a better way of aggregation.

• More variations under aggregation view



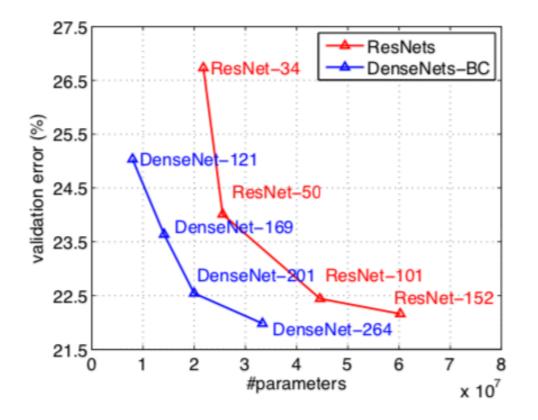
# Cons of Concatenation

- Disadvantage :
  - Exploding parameters in deep networks-> O(n^2)
  - Redundant inputs in deeper layers



# Cons of Summation

- Disadvantage :
  - Information loss during aggregation



| Cifar-10        | param | error |
|-----------------|-------|-------|
| Res-32          | 0.46M | 7.51  |
| Res-44          | 0.66M | 7.17  |
| Res-56          | 0.85M | 6.97  |
| Res-110         | 1.7M  | 6.43  |
| <b>Res-1202</b> | 19.4M | 7.93  |

# Thinking on Cat and Sum

- ResNet and DenseNet are both dense aggregation structure.
- Summation appears to be powerful on gradients, **BUT** 
  - Information loss leads to parameter deficiency
- Concat is a better way of aggregations, **BUT** 
  - Blowing params and redundancy
- Any way to utilize both advantages without bringing new troubles?

# Thinking on Cat and Sum

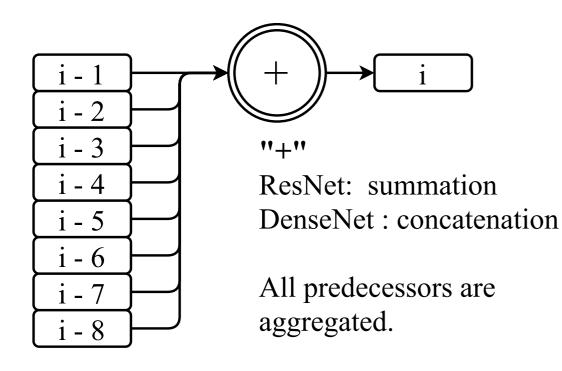
- Improvement on aggregation operators?
  - Combine both ? (Mixed link and dual path)
  - Others operators, e.g. + \* % mod
- Improvement on aggregation pattern?
  - Worthy trying

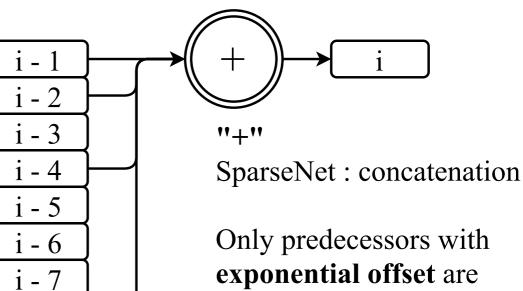
# Our Goal

- Shortest gradient path between layers
  - Better than O(N) [plain]
  - Close to O(1) [ResNet and DenseNet]
- Connections / Params
  - Less than O(N^2) [DenseNet]
  - Close to O(N) [plain, ResNet]

i - 8

- Use concatenation as aggregation
- Only gather layers with exponential offsets  $\bullet$





exponential offset are aggregated.

• The total skip connections (params)

 $log_c 1 + log_c 2 + \dots + log_c N = log_c N! \approx log_c N^N = O(NlgN)$ 

• The gradient flow between any two layers

 $N \text{ offsets} => log_c N \times (c-1) \text{ steps}$ 

• For example, when base is 2

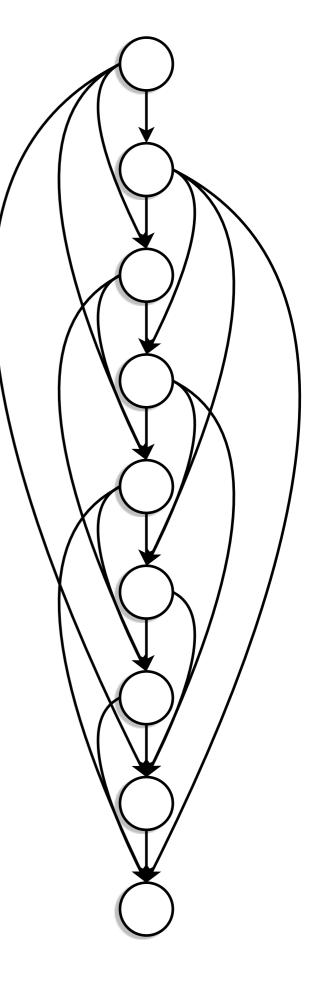
23 offsets  $=> 10111_2 => 4$  steps 14 offsets  $=> 1110_2 => 3$  steps

- The best choice of base C
- The gradient path as short as possible

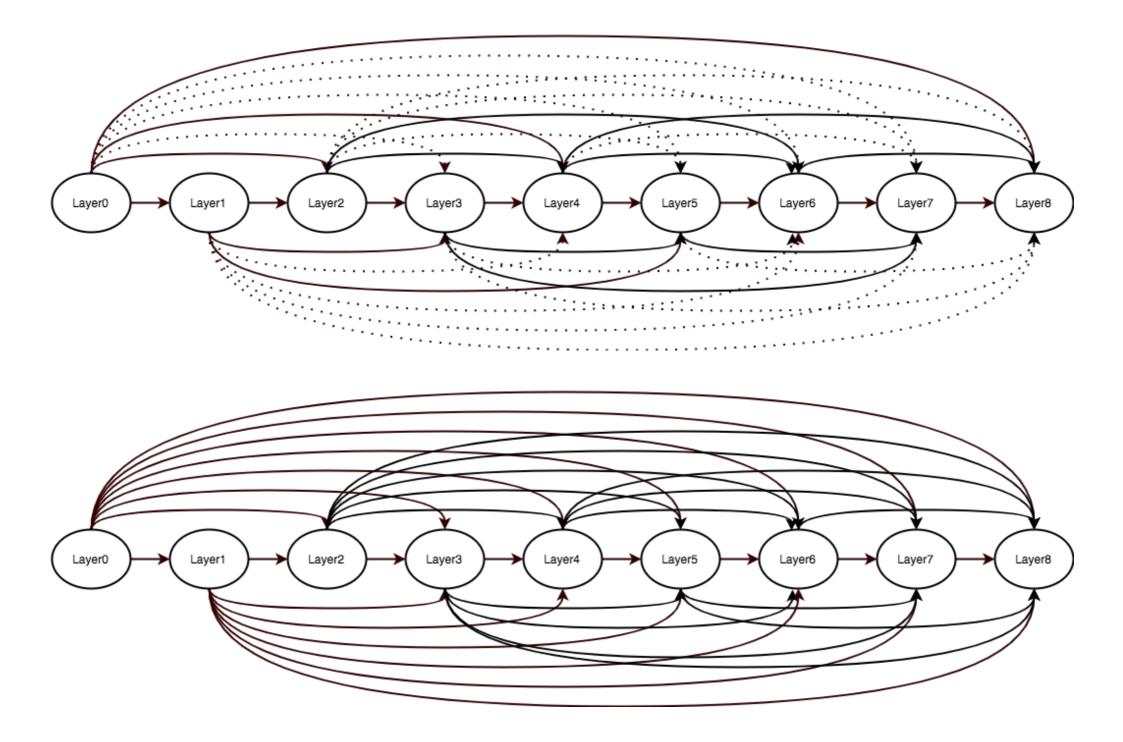
$$N \text{ offsets} => log_c N \times (C - 1) \text{ steps}$$
$$=> log_2 N \times \frac{(C - 1)}{log_2 C} \text{ steps}$$

• So, we choose base 2

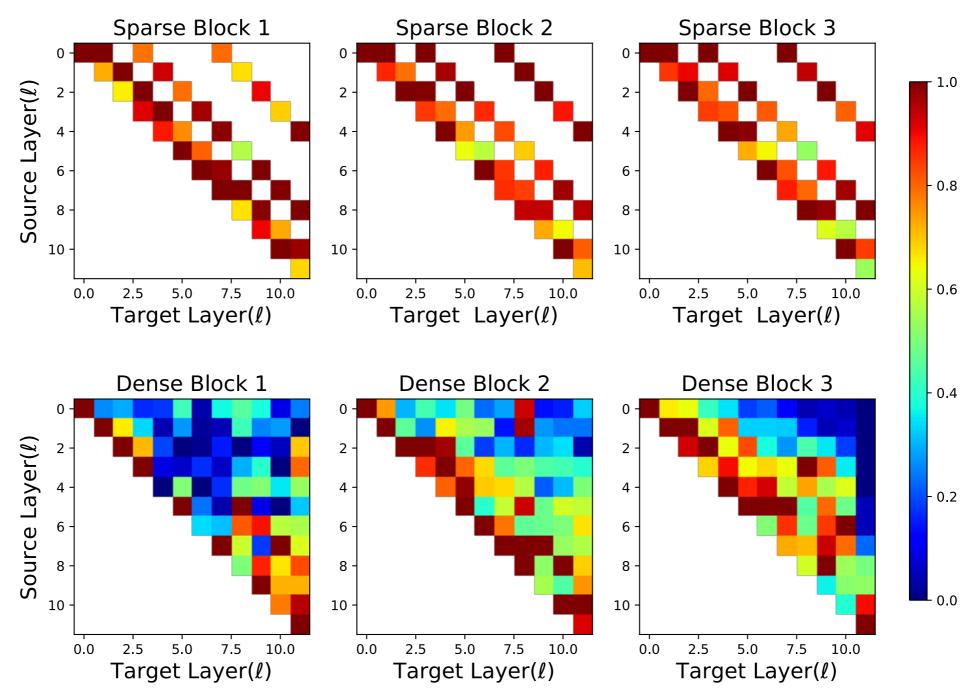
|           | Connections | Gradient Path |
|-----------|-------------|---------------|
| Plain     | O(N)        | Ν             |
| ResNet    | O(N * c)    | 1             |
| DenseNet  | O(N ^ 2)    | 1             |
| SparseNet | O(N * IgN)  | IgN           |



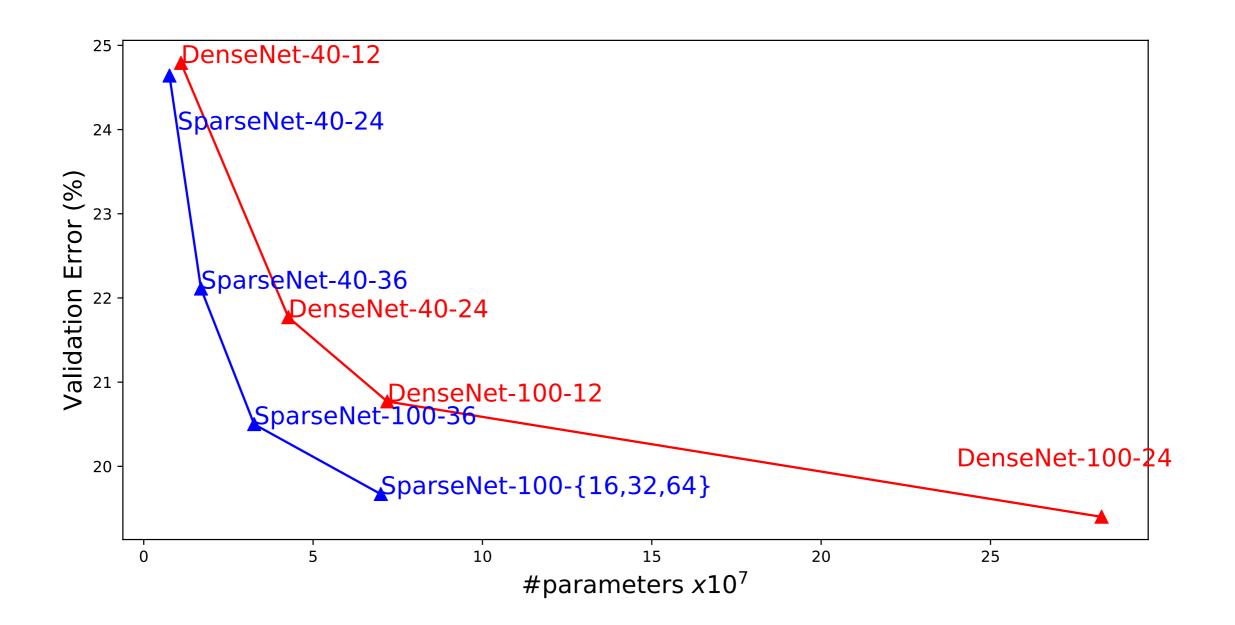
#### Sparse Compare with Dense

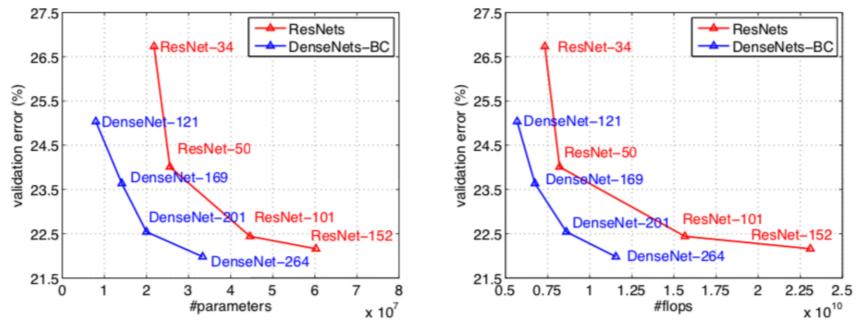


• Better params utilization (almost no redundancy)

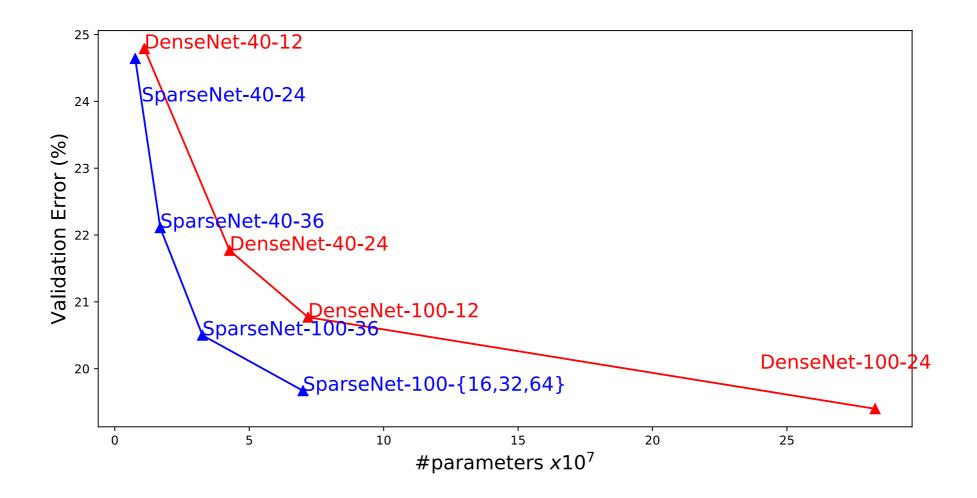


• Better param efficiency (CIFAR)





**Figure 3:** Comparison of the DenseNets and ResNets top-1 error rates (single-crop testing) on the ImageNet validation dataset as a function of learned parameters (*left*) and FLOPs during test-time (*right*).



| Method                       | Depth | Params | C10+  | C100+  |
|------------------------------|-------|--------|-------|--------|
| ResNet [6]                   | 110   | 1.7M   | 6.61  | -      |
| ResNet(pre-activation)[6]    | 164   | 1.7M   | 5.46  | 24.33  |
| ResNet(pre-activation)[6]    | 1001  | 10.2M  | 4.62  | 22.71  |
| Wide ResNet [22]             | 16    | 11.0M  | 4.81  | 22.07  |
| Fractal [12]                 | 21    | 38.6M  | 5.52  | 23.30  |
| DenseNet (k=12)[7]           | 40    | 1.1M   | 5.39* | 24.79* |
| DenseNet (k=12)[7]           | 100   | 7.2M   | 4.28* | 20.97* |
| DenseNet (k=24)[7]           | 100   | 28.28M | 4.04* | 19.61* |
| DenseNet-BC (k=12)[7]        | 100   | 0.8M   | 4.68* | 22.62* |
| DenseNet-BC (k=24)[7]        | 250   | 15.3M  | 3.65  | 17.6   |
| DenseNet-BC (k=40)[7]        | 190   | 25.6M  | 3.75* | 17.53* |
| SparseNet (k=24)             | 40    | 0.76M  | 5.13  | 24.65  |
| SparseNet (k=24)             | 100   | 2.52M  | 4.64  | 22.41  |
| SparseNet (k=36)             | 100   | 5.65M  | 4.34  | 20.50  |
| SparseNet (k=16, 32, 64)     | 100   | 7.22M  | 4.11  | 19.49  |
| SparseNet (k=32, 64, 128)    | 100   | 27.72M | 3.88  | 18.80  |
| SparseNet-BC (k=24)          | 100   | 1.46M  | 4.03  | 22.12  |
| SparseNet-BC (k=36)          | 100   | 3.26M  | 3.91  | 20.31  |
| SparseNet-BC (k=16, 32, 64)  | 100   | 4.38M  | -     | 19.71  |
| SparseNet-BC (k=32, 64, 128) | 100   | 16.72M | -     | 17.71  |

# ImageNet

| Model            | Error | Params | <b>FLOPs</b> | Time(ms) |
|------------------|-------|--------|--------------|----------|
| DenseNet-121-32  | 25.0* | 7.98M  | 5.7          | 19.5     |
| DenseNet-169-32  | 23.6* | 14.15M | 6.76         | 32.0     |
| DenseNet-201-32  | 22.5* | 20.01M | 8.63         | 42.6     |
| SparseNet-121-32 | 25.6  | 4.51M  | 3.46         | 13.5     |
| SparseNet-169-32 | 24.2  | 6.23M  | 3.74         | 18.8     |
| SparseNet-201-32 | 23.1  | 7.22M  | 4.13         | 22.0     |

| Model            | Error | Params | FLOPs | Time(ms) |
|------------------|-------|--------|-------|----------|
| DenseNet-121-32  | 25.0* | 7.98M  | 5.7   | 19.5     |
| DenseNet-169-32  | 23.6* | 14.15M | 6.76  | 32.0     |
| DenseNet-201-32  | 22.5* | 20.01M | 8.63  | 42.6     |
| SparseNet-121-32 | 25.6  | 4.51M  | 3.46  | 13.5     |
| SparseNet-169-32 | 24.2  | 6.23M  | 3.74  | 18.8     |
| SparseNet-201-32 | 23.1  | 7.22M  | 4.13  | 22.0     |

| Network              | Top-1 Error | Top-5 Error | Parameters        | Pruning<br>Rate |
|----------------------|-------------|-------------|-------------------|-----------------|
| LeNet-300-100        | 1.64%       | -           | 267K              |                 |
| LeNet-300-100 Pruned | 1.59%       | -           | 22K               | 12	imes         |
| LeNet-5              | 0.80%       | -           | 431K              |                 |
| LeNet-5 Pruned       | 0.77%       | -           | 36K               | <b>12</b> imes  |
| AlexNet              | 42.78%      | 19.73%      | 61M               |                 |
| AlexNet Pruned       | 42.77%      | 19.67%      | $6.7\mathrm{M}$   | 9 	imes         |
| VGG-16               | 31.50%      | 11.32%      | 138M              |                 |
| VGG-16 Pruned        | 31.34%      | 10.88%      | 10.3M             | <b>13</b> imes  |
| GoogleNet            | 31.14%      | 10.96%      | 7.0M              |                 |
| GoogleNet Pruned     | 31.04%      | 10.88%      | 2.0M              | <b>3.5</b> imes |
| SqueezeNet           | 42.56%      | 19.52%      | 1.2M              |                 |
| SqueezeNet Pruned    | 42.26%      | 19.34%      | 0.38M             | <b>3.2</b> imes |
| ResNet-50            | 23.85%      | 7.13%       | $25.5\mathrm{M}$  |                 |
| ResNet-50 Pruned     | 23.65%      | 6.85%       | $7.47 \mathrm{M}$ | 3.4	imes        |

- Analyze Res and Dense in an aggregation view.
- Propose a new aggregation style Sparse
  - Parameters growth : O(nlgn)
  - Gradient between arbitrary layers : O(Ign)
  - Higher parameter efficiency
    - 1/3 ~ 1/5 compared to DenseNet
    - 1/5 ~ 1/15 compared to ResNet



#### Thank you!

— Ligeng Zhu